Tourmaline geochemistry and B-isotopes from the Palokas Au-mineralization, Peräpohja Belt, Northern Finland

J-P. Ranta1*, E. Hanski1, Y. Lahaye2

1 Oulu Mining School, P.O.Box 3000, FI-90014 University of Oulu, FINLAND
2 Geological Survey of Finland, P.O. Box 96, 02151 Espoo, Finland
(*correspondence: jukka-pekka.ranta@oulu.fi)

In 2012, disseminated gold mineralization was discovered in the Rajapolot area, located in the northern part of the Paleoproterozoic Peräpohja Belt. This study presents microprobe and B isotope data from tourmaline collected from three different localities: the Rajapolot gold mineralization, ca. 1.78 Ga tourmaline granite and Petäjäskoski Formation with an inferred evaporitic origin. Based on textural evidence, tourmaline in the gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 is occurs in late veins/breccia zones with the mineralogy consisting of ca. 80% of tourmaline and 20% of sulphides.

All the studied tourmalines belong to the alkali group tourmalines and can classified as dravites and schorks. $\delta^{11}B$ values between the three localities are identical, ranging from +1 to -4‰. Tourmalines from the Au mineralization and from the Petäjäskoski Formation show similar compositional trends and dominant substitutions. No indications of substitution of Al by Fe$^{3+}$ were observed, hence implying low Fe$^{3+}$/Fe$^{2+}$ values. Compositional data indicate that the tourmaline grains in the Rajapolot Au mineralization were precipitated from reducing low-salinity fluids. Similar chemical compositions and $\delta^{11}B$ values imply a common boron source for all the analyzed tourmalines. The late appearance of the tourmalines and preliminary Re-Os dating of molybdenite (Vanhanen et al., 2015) indicate at least the temporal association of tourmaline in the Rajapolot Au mineralization and ca. 1.78 Ga granites.

References: