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The extent of substitution of Fe by Al in goethite in 32 lake ore samples collected 
from 11 lakes in Finland varied between 0 and 23 mol-%. The data indicated a 
negative relationship between Al-substitution and the particle size of lake ore. 
Differences in the Al-substitution were apparent between sampling sites, suggesting 
that kinetic and environmental variation in lake ore formation influences the 
substitution. Non-substituted goethite is formed in coarse-grained sediments with 
locally high concentrations of Fe due to iron-rich springs. Unit cell edge lengths 
and volumes of goethite varied as function of Al-subsitution but deviated from the 
Vegard relationship towards higher values. 
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INTRODUCTION 

Aluminum can substitute for up to one third of iron 
in goethite. In soil goethites large variation in Al-
s u b s t i t u t i o n r e f l e c t s d i f f e r e n t p e d o g e n i c 
envi ronments . Strong weather ing condi t ions in 
non-hydromorphic soils promote Al substitution 
in g o e t h i t e , c o m p a r e d w i t h h y d r o m o r p h i c 
env i ronmen t s where wea ther ing is less severe 
(Fitzpatrick and Schwertmann, 1982). The degree 
of Al substitution reflects the activity of soluble 
a l u m i n u m a s s o c i a t e d w i t h g o e t h i t e c r y s t a l 
development and, therefore, is influenced by pH 
and Si concentration (Schwertmann and Taylor, 
1989). 

Iron oxides have been characterized from diverse 
environments: natural cold springs (Carlson and 
Schwertmann, 1981), groundwater treatment plants 
(Hatva et al., 1985), podzol B-horizons (Jauhiai-
nen. 1969), bands in gravel and sand (Koljonen et 
al., 1976; Carlson et al., 1977), concretions around 
root channels (Alhonen et al., 1975), and lake ores. 
In springs and water treatment plants the rate of iron 
oxidation is relatively high and mainly ferrihydrite 

is f o r m e d (Car l son and S c h w e r t m a n n , 1987). 
Ochreous bands in gravel and sand, formed in the 
capillary fr inge zone, contain both lepidocrocite 
and goethite (Koljonen et al., 1976), as also reported 
for root concretions (Schwertmann and Fitzpatrick, 
1977). Lake ores contain mainly goethite. Some lake 
ores also contain some ferr ihydri te which can, 
however, be easily removed. Therefore, lake ores 
a re we l l su i t ed f o r the d e t e r m i n a t i o n of Al 
substitution in goethites formed under the climatic 
conditions prevailing in Finland. 

Nodular Fe-Mn concretions also occur in many 
diverse environments. Deep-sea manganese nodules 
contain appreciable concentrations of metals such 
as Ni , C u , Z n , and C o . S h a l l o w sea F e - M n 
concretions show a higher rate of accumulat ion 
(more than 10.000 times), higher Fe-Mn ratios, and 
about 2 orders of magnitude lower content of trace 
me ta l s than d e e p - s e a m a n g a n e s e n o d u l e s 
(Moenke-Blankenburg et al., 1989). Lake ores, on 
an average, have slightly h igher Fe-Mn ratios, 
higher rate of formation, and lower heavy metal 
content than the shallow sea concretions. In both 
lake ores and shallow sea concretions the Fe-Mn 
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r a t i o s va ry c o n s i d e r a b l y , or M n - r i c h l aye r s 
a l ternate with Fe-r ich layers (Vaasjoki , 1956; 
Winterhal ter and Siivola, 1967). Concre t ionary 
Fe -Mn oxide accumula t ions are a lso found in 
streams (Nowlan et al., 1983) and soils (Taylor 
and Schwertmann, 1974). 

Concretions f rom shallow sea and lake bottoms 
are spherical or discoidal, or form continuous crusts. 
Many descriptive characterizations have been used 
(e.g., buckshot, bean, pea, dried prune, potato) for 
more or less irregular spherical concretions (As-
ehan, 1908; Moore. 1910; Schoettle and Friedman, 
1971). They have also been called pisolitic or oolitic 
(Strakhov, 1966; Halbach, 1976). Morphologically, 
discoidal forms have been compared to buttons, 
pennies, dried apricots, biscuits, saucers, pancakes, 
cakes and shields (Asehan, 1908; Moore, 1910; 
Aarnio, 1917; Schoettle and Friedman, 1971; Burns 
and Brown, 1972; Suess and Djafari, 1977). 

In this study, the terms spherical, discoidal, and 
crus t ore are used . Wi th lake ores f o r m e d in 
shallow parts of the lakes (depths down to a few 
meters), the size dccrcascs with depth: crust ore 
is found closest to the shore, discoidal ore at me-
dium depths, and spherical ore farthest away and 
w i t h i n the u p p e r m o s t 5 - 1 0 cm of b o t t o m 
sediment (Strakhov, 1966; Halbach, 1976). There 
is some over lap in the fo rmat ion zones of the 
different types and sometimes even all three types 
can be sampled in one site. Often only concretional 
forms are found, or, less frequently, solely small 
spherical pisoliths. Aarnio (1917) speculated that 
thick, shapeless lake ore (bar ore) is formed where 
Fe-bearing spring oozes evenly through the bottom 
sediment. Where it only can use root channels to 
reach the lake bot tom, concret ions are formed: 
spherical (buckshot and pea ore) if there are plenty 
of channels and a thin layer of gyttja, and discoidal 
(shield ore) if the channels are fewer and the layer 
of gyttja is thick. 

S c h w e r t m a n n et a l . ( 1 9 8 7 ) s t u d i e d A l -
substitution in lake-ore goethites f rom two Fin-
nish lakes. Goethites f rom thick crust ore formed 
on gravelly bottom sediment were non-substituted, 
whereas nodular (spherical and discoidal) lake 
ores f o r m e d on s i l ty -c layey bo t tom sed imen t 

showed Al-substitution of 7.2 - 8.6 mol-%. The 
c r u s t o r e s a l so c o n t a i n e d a h i g h a m o u n t of 
ferrihydrite, and it was concluded that the rate of 
lake-ore formation was relatively high. The nodular 
lake ores formed in and on finer-grained bot tom 
s e d i m e n t s h o w e d be t t e r c rys ta l l in i ty of the i r 
goethites and contained no ferrihydrite suggesting 
that they were formed slowly. The main reason for 
the difference in Al-substitution of their goethites 
was thought to be the difference in the availability 
of Al f rom the bottom sediments: clay minerals 
with high Al supply versus coarse grained quartz 
and feldspar with low Al supply. 

In the present s tudy lake ore samples were 
co l l ec t ed and A l - subs t i t u t i on of the goe th i t e 
fractions were determined. Because the environment 
of lake ore formation influences nodular size and 
form, sampl ing was carried out in an ef for t to 
establish if there is a difference in Al-substitution 
of goethites from different size classes of lake ores 
and what its significance might be. 

MATERIALS AND METHODS 

For this work, lake ore and bottom sediment were 
sampled f rom 14 lakes in southern, central, and 
eas te rn F in land . T h o s e r ich in m a n g a n e s e or 
ferrihydrite (Feo/Fed > 0 . 2 1 ) were excluded. Two 
goe th i t e - r i ch r e f e r e n c e s a m p l e s de sc r ibed by 
Schwertmann et al. (1987) and four samples f rom 
the courtesy of T. Koljonen (Geological Survey 
of Finland) were included in this study. Most of 
the samples conta ined spherical and discoidal 
concretions but crust ore was also included. Where 
a variety of sizes (and shapes) were available, 
subsampling was done by handpicking. Thus, a total 
of 32 lake ore samples f rom 15 sampling sites in 
11 lakes were examined (Table 1). Gra in size 
distr ibution was determined by sieving for ten 
bottom sediment samples. 

The samples were gently crushed in an agate 
mortar. To exclude poorly ordered Fe- and Al-
compounds the samples were first extracted with 
acid ammonium oxalate (Schwertmann, 1964). Fe 
and AI concent ra t ions in the supernatant were 



Table 1. Sampling sites and lake ore types. 

Aluminum substitution in goethite in lake ore 21 

Sample Lake Coordinates Depth Lake-ore Water Bottom sediment13 

No N E m types3 pH cl/si% sa% gr% 

101 Liesjärvi 60°41'23°55' 1.0 sp, di 8.8 6 94 0 
102 Salkolanjärvi 60°38' 23°52' 1.5 di 6.1 13 87 0 
103 Vuotinainen 60°37' 24°04' 0.5 di 5.8 0 100 0 
107 Jääsjärvi 61°36' 26°04' 1.5 sp 6.3 30 70 0 
109A Tohmajärvi 62°11' 30°23' 0.4 sp, di 7.0 0 100 0 
109B Tohmajärvi 62°11' 30°23' 0.5 sp, di 7.0 0 100 0 
109C Tohmajärvi 62°11' 30°23' 0.6 di 7.0 0 100 0 
111 Pyhtäänjärvi 62°19' 26°02' 1.4 sp, cr 6.5 20 80 0 
114 Koitere 63°00' 30°47' 4-5 cr n.d. n.d. 
39 D Murtojärvi 62°27' 30°09' 1.2 sp, di, cr 6.7 1 58 41 
46C Enovesi 61°29' 25°54' 0.8 sp, di, cr 6.9 91 9 0 
K84 Petäjävesi 62°15' 25°10' 1.0 sp, cr n.d. n.d. 
K87 Petäjävesi 62°15' 25°10' 2.0 sp, di n.d. n.d. 
49C Piispajärvi 65°34' 29°04' 1.0 sp, di n.d. n.d. 
49 D Piispajärvi 65°34' 29°04' 1.5 sp, di n.d. n.d. 

a, sp, spherical; di, discoidal; cr, crust 
b, cl/si, fraction < 62 pm; sa, fraction 62 pm - 2 mm; gr, fraction > 2 mm 
n.d., not determined. 

general ly low. Fe and Al in the oxalate-treated 
r e s i d u e w e r e e x t r a c t e d us ing the d i t h i o n i t e -
citrate-bicarbonate method of Mehra and Jackson 
(1960) and determined using a Jobin Yvon 70+ 
i n d u c t i v e l y - c o u p l e d p l a s m a e m i s s i o n 
spectrometer. The di thioni te-ci t rate-bicarbonate 
m e t h o d s e l e c t i v e l y d i s s o l v e s o x i d i c F e 
compounds , and thus only Al bound in Fe oxides, 
leaving the silicate minerals intact. 

The effect of Al-substitution on the unit cell 
edge lengths of goethite was determined on the 
basis of s tep-scanned X-ray d i f f rac t ion (XRD) 
patterns using C o K a radiation and a Philips PW 
1050 vertical goniometer equipped with a graphite 
r e f l ec t ed -beam monochromato r . Step size was 
0 . 0 5 2 0 a n d c o u n t i n g t i m e 2 0 s / s t e p . Al l 
specimens were step-scanned f rom 10 to 8O°20. 
Back-fi l led powder mounts were used with Si as 
internal standard. The digitized scans were fitted 
with the FIT curve program of Janik and Raupach 
(1977) as modif ied by H. Stanjek (unpublished). 
Unit-cell edge lengths were calculated with the 

program Gitter (W. Hummel , unpublished) using 
six tan 0 weighted ref lec t ions (110, 130, 111, 
221, 151, and 002). 

RESULTS AND DISCUSSION 

Al-substitution as determined chemically 

The lake ore samples contain 30-51 % (wt/wt) iron 
(Table 2), indicating that they were relatively pure 
i ron ox ides . T h e n o d u l a r f o r m s w e r e mos t ly 
concentric around a nucleus such as a sand particle. 
A small amount of fine-grained material such as clay 
particles and organic detritus was probably trapped 
during the precipitation of iron oxide. The total 
carbon content of lake ores from Lake Murtojärvi 
and L a k e E n o v e s i w a s 0 . 4 - 1 . 6 % ( w t / w t ) 
(Schwertmann et al., 1987). The aluminum content 
of lake ores varies from 0.0 to 5.7 % (wt/wt) (Table 
2) w h i c h is e q u i v a l e n t to 0.1 to 23 m o l - % 
substitution. 
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Table 2. Dithionite-soluble Fe and AI in different type and size classes of lake ores. 

Sample No Type3 Size" mm Fe c 
d-o 

101 sp 1 - 2 43.72 
sp 3 - 5 46.85 
di 5 - 7 43.90 
di 1 0 - 1 3 43.61 

102 di 6 - 9 38.60 

103 di 12 41.51 

107 sp 1 - 3 40.02 

109A sp 4 45.03 
di 6 - 8 41.34 

109B sp 2 - 5 47.88 
di 6 - 7 48.21 
cr 31.86 

109C di 5 - 7 35.10 

111 sp 2 - 7 46.43 
cr 44.74 

114 cr 29.28 

39 D sp 5 - 8 39.43 
di 1 2 - 1 4 37.32 

46C sp 1 - 3 43.68 
sp 5 - 8 38.79 
di 4 - 7 50.05 

K84 sp 1 - 2 43.11 
sp 3 - 6 46.34 
sp 6 - 1 0 50.69 
cr 49.53 

K87 sp 1 - 3 42.66 
sp 3 - 6 42.42 
di 1 2 - 1 4 39.30 

49C sp 3 - 5 47.52 
di 6 - 8 44.50 

49D sp 2 - 3 37.52 
di 5 - 7 43.30 

a, sp, spherical; di, discoidal; cr, crust ore 
b, diameter of spherical lake ores; 

diameter of discoidal lake ore, thickness 1 -4 mm. 

AL % Al mol-% d-o 

3.64 14.65 
2.27 9.13 
2.10 9.01 
1.51 6.69 

1.84 8.98 

1.69 7.77 

5.67 22.67 

0.84 3.72 
0.64 3.12 

0.73 3.06 
0.94 3.87 
0.19 1.23 

0.72 4.05 

1.34 5.63 
0.28 1.28 

0.41 2.84 

0.021 0.11 
0.046 0.25 

2.775 11.62 
1.52 7.48 
2.57 9.62 

4.67 18.31 
2.35 9.50 
2.11 7.93 
1.94 7.50 

4.35 17.44 
2.55 11.06 
1.33 6.56 

2.66 10.38 
2.31 9.71 

3.17 14.88 
3.05 12.71 
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T h e r e w a s an inve r se co r re l a t ion b e t w e e n 
aluminum substitution and lake-ore size (Table 2), 
also within one sampling site (e.g., sites 101, 46C, 
K84, K87, and 49C,D). The smallest pisoliths ( 1 - 2 
m m or 1 - 3 mm) show highest substitution. The 
highest substitution was found in samples f rom site 
107 where only few, small spherical concretions 
were found in the uppermost silty sand sediment 
(Table 1). 

According to Strakhov (1966), in shallow depths 
of small lakes, lake ore particle size decreses with 
increas ing depth of water and a lso of bo t tom 
sediment. The reason for this could be that with 
inc reas ing depth and wi th in the sed imen t the 
conditions are less oxidizing and thus the rate of 
formation and the particle size are reduced. Another 
explanation for higher substitution, suggested by 
Schwertmann et al. (1987), is the availability of 
a l u m i n u m in the e n v i r o n m e n t . In l a b o r a t o r y 
experiments clay minerals have been found to supply 
Al to developing goethite (Schwertmann, 1988). In 
lakes, bottom sediments normally become finer with 
depth but there are differences between lakes. In 
Lake Tohmajärvi (site 109), only medium sand was 
found in the ore-bearing zone, and there was little 
difference in Al substitution between the different 
subsamples (Table 2). The coarsest bottom sediment 
and highest rate of Fe supply, according to high 
proportions of ferrihydrite (Feo/Fed 0.12 - 0.46; 
Schwertmann et al., 1987) in most ores examined, 
were found in Lake Murtojärvi (site 39D). Even 
the smal les t ores which are fo rmed in greater 
depths but in coarse sediment (Table 1) than the 
thick crust ores showed no Al-substitution in their 
goethi te f ract ions . Highly substi tuted goethi tes 
are formed where the rate of Fe supply and of lake 
ore formation probably are low, and clay minerals 
and other Al sources are present. In this environment, 
concentrations of dissolved Fe and Al, and the Fe-
A1 ratio in pore solution are low. Differences within 
one sampling site (the highest measured substitution 
more than twice that of the lowest, e.g., sites 101, 
K84, K87) could be due to formation in different 
microenvironments , on the bot tom sediment vs. 
within it or at different depths, affecting both the 
rate of oxidation and the availability of Al. 

The influence of Al-substitution on the unit cell 
edge lenghts of goethite 

The Al3+ ion is smaller than the Fe3+ ion by 15 %. 
The unit cell of diaspore ( a - A l O O H ) is smaller 
by 15 % (a, 4.396 Å; b, 9.426 Å; c, 2.844 Å; V, 
117.85 Å3; JCPDS card 5-355) than the unit cell 
of goethite ( a - F e O O H ) (a, 4.606 Å; b, 9.956 Å; 
c, 3.0215 Å; V, 138.56 Å3 ; JCPDS card 17-536). 
Therefore, the unit cell of goethite contracts when 
Al replaces Fe. The Vegard lines which connect 
the unit cell edge lengths of goethite and diaspore 
may be used to predict the change. 

Synthetic and natural Al-substituted goethites have 
been examined to construct calibration curves for 
the de te rmina t ion of Al subst i tu t ion by X- ray 
diffraction. Norrish and Taylor (1961) used d ( l l l ) 
of seven soil goethites and found a reasonably good 
correlation with chemically determined AI. Schulze 
(1984) synthesized Al-substituted goethites using 
several methods at 25° and 70"C. He found linear 
relationships between chemically determined Al and 
unit cell edge lengths b and c, whereas a varied 
considerably and was higher than the Vegard rule 
predicted. Because b vs. mol-% Al showed some 
scattering above 20 mol-% substitution, Schulze 
(1984) recommended c for the estimation of Al-
substitution, based on the empirical formula: mol-
% Al = 1730 - 572.0c (r2 = 0.98, n = 81). 

Schulze (1984) noticed that the a dimension of 
goethites varied with the experimental conditions; 
those synthesized at 25°C had larger a dimensions 
than those syn thes i zed at 70"C. The b and c 
dimensions were also sensitive to the experimental 
conditions of goethite formation. The main factors 
s e e m e d to b e the ra te of c r y s t a l l i z a t i o n and 
temperature - slowly and "hotter" formed goethites 
had less structural defects and somewhat smaller 
un i t c e l l s ( p e r h a p s b e c a u s e of s m a l l e r a 
dimension) than those which had the same degree 
of substitution but were formed at faster rates. 

In Fig. 1, the unit cell edge lengths and the unit 
cell volume of 32 lake ore goethite samples are 
plotted against their chemically determined Al-
substitution. During the work it became apparent 
that different lines gave variable results. Schulze 
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Table 3. Unit cell edge lengths and unit cell volume of lake-ore goethites. 

Sample3 Al mol-% a Å b Å C Å VÅ3 

101 sp1 -2 14.65 4.5990 9.9066 3.0046 136.89 
101sp3-5 9.13 4.6057 9.9374 3.0130 137.90 
101di5-7 9.01 4.6060 9.9364 3.0134 137.91 
101di10-13 6.69 4.6091 9.9482 3.0163 138.31 
102di6-9 8.98 4.6081 9.9409 3.0126 138.00 

103di12 7.77 4.6067 9.9341 3.0121 137.84 
107sp1-3 22.67 4.5952 9.9010 3.0007 136.53 
109Asp4 3.72 4.6139 9.9594 3.0181 138.68 
109Adi6-8 3.12 4.6142 9.9585 3.0171 138.64 
109Bsp2-5 3.06 4.6129 9.9581 3.0187 138.67 

109Bdi6-7 3.87 4.6133 9.9564 3.0178 138.61 
109Bdibr 1.23 4.6127 9.9599 3.0176 138.63 
109Cdi5-7 4.05 4.6107 9.9512 3.0163 138.40 
111sp2-7 5.63 4.6079 9.9434 3.0145 138.12 
111 cr 1.28 4.6174 9.9627 3.0182 138.84 

114cr 2.84 4.6212 9.9729 3.0164 139.02 
39Dsp5-8 0.11 4.6221 9.9696 3.0144 138.91 
39Ddi12-14 0.25 4.6200 9.9777 3.0176 139.10 
46Csp1-3 11.62 4.6057 9.9280 3.0106 137.66 
46Csp5-8 7.48 4.6077 9.9568 3.0125 138.21 

46Cdi4-7 9.62 4.6077 9.9370 3.0151 138.05 
K84sp1-2 18.31 4.5973 9.9189 3.0033 136.95 
K84sp3-6 9.50 4.6011 9.9263 3.0074 137.35 
K84sp6-10 7.93 4.6055 9.9408 3.0121 137.90 
K84cr 7.50 4.6059 9.9478 3.0135 138.07 

K87sp1-3 17.44 4.5986 9.9086 3.0054 136.94 
K87sp3-6 11.06 4.6025 9.9336 3.0099 137.61 
K87di12-14 6.56 4.6068 9.9562 3.0123 138.16 
49Csp3-5 10.38 4.6063 9.9344 3.0110 137.78 
49Cdi6-8 9.71 4.6088 9.9343 3.0113 137.87 

49Dsp2-3 14.88 4.6052 9.9164 3.0071 137.32 
49Ddi5-7 12.71 4.6068 9.9276 3.0104 137.68 

a, sp, spherical; di, discoidal; cr, crust. 



Aluminum substitution in goethite in lake ore 27 

(1984) used three lines (110, 130, and 111) and 
corrected their positions according to apparent line 
shift caused by small particle size (broad diffraction 
lines). The lines were not corrected in the present 
study because the necessary data were not available 
for lines at angles above 5O°20 C o K a . The widths 
of the lines used for the calculations were reasonably 
similar for all specimens. 

T h e un i t cel l e d g e l e n g t h s s h o w e d l i nea r 
relationships with Al-substitution (Fig. 1 a-c). The 
b dimension showed greatest linear dependency 
( r = 0.89) and the a dimension the lowest (r2 = 
0.78). All values were above those predicted by 
the Vegard rule. The unit cell volume (r2 = 0.93) 
s h o w e d the be s t l i n e a r r e l a t i o n s h i p wi t Al -
substitution (Fig. 1 d), also reported previously 
by Schwertmann et al. (1987). Goethites formed 
rapidly on sandy or gravelly bottom (39D, 114) 
showed most deviation f rom the regression lines. 

There is a need for calibration curve for X R D 
d e t e r m i n a t i o n of Al s u b s t i t u t i o n in n a t u r a l 
goethites. There is no calibration curve which suits 
to goethi tes f o rmed in all k inds of condi t ions , 
rapidly or slowly, in the presence or absence of 
inhibi tors , in cool or w a r m c l imate . Uni t cell 
volume has proved to be a better choise than any 
of the three unit cell edge lengths for lake-ore 
goethites. Of unit cell edge lengths, b seems to be 

a better choice than c. This is in line with Schulze 's 
(1984) observation that scattering in b dimension 
occurred above 20 mol-% substitution which is 
no t r e l e v a n t in c a s e of l a k e - o r e g o e t h i t e s . 
According to Schwer tmann and Carlson (1994) 
goethites formed in tropical climates have shorter 
a and c dimensions and a smaller unit cell volume 
than l ake -o re goe th i tes bu t about the s ame b 
dimension. 
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