A FACTOR ANALYSIS STUDY OF THE MAJOR ELEMENT GEOCHEMISTRY OF GRANITIC ROCKS

RISTO PIISPANEN and TUOMO ALAPIETI

PIISPANEN, R. and ALAPIETI, T., 1977: A factor analysis study of the major element geochemistry of granitic rocks. *Bull. Geol. Soc. Finland* 49 (2): 143-150.

A Varimax-rotated R-mode factor analysis was performed on a collection of 195 whole-rock major element chemical analyses of granitic rocks, mainly Finnish. Factor loadings with corresponding eigenvalues and communalities were computed separately for 3 to 6 factors. The rapakivis, the non-rapakivis and the combined group of all the granitic rocks were each studied individually. The results show that, in contrast to the other granites, the rapakivis form a fairly homogeneous group with pronouncedly high mutual correlations between the components. A factor analysis, therefore, reveals one single factor with a very high eigenvalue. This factor is designated the femic factor on the basis of the most important participating components. In other granitic rocks three main factors emerge; these are termed the femic, the one-alkali and the biotite factor, respectively. The existence of the one-alkali factor reflects the even stronger negative correlation of Na₂O and K₂O in the nonrapakivis compared with the rapakivis.

Risto Piispanen and Tuomo Alapieti, Department of Geology, University of Oulu, SF-90100 Oulu 10, Finland.

Introduction

Since its early origins in psychology (see Koch and Link 1971, p. 121), factor analysis has been performed on collections of multivariate data within a variety of scientific fields. In geology applications of the method are already commonplace in palaeontology (e.g. Gould 1967), sedimentology (e.g. Krumbein and Graybill 1965; Imbrie and Purdy 1962), mineralogy (e.g. Saxena 1969) and economic geology (e.g. Koch and Link 1971), but in petrology and lithogeochemistry the applications to date are very few. It is the aim of any factor analysis to try to find simple structure among a multitude of variables, and consequently to minimize the number of independent variables in terms of which the wealth of information is presented. A factor analysis thus creates new »artificial» properties which should cover to as great a degree as possible the total variances of the original properties. As a result of a successful factor analysis, for instance, information can be graphically displayed far more easily than would otherwise be possible, and the comprehensibility of the information contained in the data collection is thereby increased. On the other hand, the new artificial variables created in association with the analysis are often difficult to interpret empirically in physical terms and their real nature and associated geological implications often prove to be interpretable only with difficulty.

When applying factor analysis to a collection of major element data of a rock-group the main interest is directed towards a possible parallelism of the mineralogical composition and the factor pattern. In a simple hypothetical system, in which each chemical component would have a mineralogical counterpart of its own, a high correlation between some of the components would induce a correspondingly high correlation among some of the mineral phases and, in the analysis therefore, a factor could be created which would represent both the chemical components and the minerals and could also be interpreted in terms of the mineral composition. In real rocks in which most of the chemical components occupy positions in more than one mineral's lattice and, furthermore, each mineral (with rare exceptions) comprises more than one chemical component, the situation is much more complicated. High correlations among the chemical components may exist but the factors that can be created on the basis of the correlations may not be easily interpretable in terms of the mineral composition. To see whether the mineral composition is reflected in the factor pattern is one of the interesting points of lithogeochemical factor analysis.

The number of factors that can be created in a factor analysis is dependent on the degree of correlation between the properties to be studied, in this case the chemical components. Similarly, the resulting eigenvalues and the communalities also reflect the degree of correlation and the successfulness of the analysis. In a closed system such as a wholerock chemical analysis, i.e., in a system with a fixed sum (or nearly so) some apparent correlation resulting from arithmetical reasons can be of utmost importance. This type of correlation has been called induced correlation, and, Chayes in particular, has paid attention to it (Chayes 1962, Chayes and Kruskal 1966, Koch and Link 1971, p. 169). Therefore one of the interesting aspects of a factor analysis is also to study whether the induced correlation will manifest itself in the results of a lithogeochemical factor analysis.

Material, method and results

The collection of silicate analyses of granitic rocks that have been earlier described in detail by one of the authors (Piispanen 1977) was utilized as the basic data collection for the present study. For the data sources and other details the reader is referred to this earlier publication (Piispanen *op. cit.*). The collection consists of 195 analyses of which 40 represent rapakivis so that for the analyses three groups can be delimited, the total family of granitic rocks including the rapakivis, the rapakivis on their own and the total family excluding the rapakivis, the socalled non-rapakivi group.

The necessary computations were carried out on the University of Oulu computer system. The principle and the method of computation were based on the correlation matrix from which, as a first phase, a noniterative principal axes solution was calculated. Each of the three subgroups of the data collection were thereafter individually subjected to a Varimax-rotated factor analysis in which pertinent loadings, eigenvalues and communalities were calculated by turns for 3 to 6 factors. The results of the relevant cases are shown in Table 1.

In Table 2 the results are summarized and converted into chemical components. For each individual factor the components listed are those which contribute most strongly to

Table 1. Factor	loadings for	individual 1	runs	covering 3 to 6 factors.	Α	stands	for	the	rapakivis.	C
for all granites	(C = A + B)	and B for	the	non-rapakivis ($B = C - $	A).				-	

	A				Commu-
· · ·	I	II	III		nality
SiO_2	759	268	566		.968
TiO_2	.826	.210	.247		.787
Al_2O_3	.190	023	.830		.726
Fe ₂ O ₃	.499	.731	010		.784
FeO	.942	.030	.189		.924
MnO	.847	019	.190		.754
MgO	.554	.570	.318		.733
CaO	.842	.025	.375		.850
Na ₂ O	.314	662	.071		.543
K_2O	720	.313	.217		.663
P_2O_5	.609	.351	.463		.709
H_2O^+	086	.768	008		.597
H_2O —	.173	.640	.180		.471
	5.190	2.637	1.683		9.509

			A		Commu-
·	I	II	III	IV	nality
SiO_2	748	292		002	.982
TiO ₂		.238	.245	.232	.803
Al_2O_3	.176	011	.833	.044	.728
Fe ₂ O ₃	.492	.742	.000	092	.801
FeO	.945	.057	.209	007	.940
MnO	.829	.008	.194	.190	.761
MgO	.522	.590	.314	.140	.738
CaO	.862	.047	.408	188	.947
Na ₂ O	.300	648	.061	.307	.607
K_2O	720	.293	.209	135	.667
P_2O_5	.552	.378	.442	.401	.805
H_2O^+	115	.767	022	.062	.605
H_2O-	.136	.648	.166	.152	.490
	5.007	2.704	1.709	.455	9.874

Table 1. cont.

			A		Commu-	
	I	II	III	IV	v	nality
SiO_2	761	243	572	101	085	 982
TiO_2	.767	.161	.246	.396	.020	.832
Al_2O_5	.180	041	.831	.056	.046	.730
Fe ₂ O ₃	.519	.725	.008	.088	002	.802
FeO	.948	.009	.189	.057	.097	.948
MnO	.822	065	.155	.091	.375	.852
MgO	.515	.533	.329	.353	028	.783
CaO	.883	.027	.399	060	065	.947
Na ₂ O	.246	701	.042	.208	.103	.607
K_2O	681	.337	.215	234	.084	.686
P_2O_5	.523	.279	.434	.449	.253	.806
H_2O^+	101	.754	004	.171	.043	.610
H_2O-	.157	.605	.147	.068	.400	.577
	4.922	2.518	1.663	.651	.408	10.161

146 Risto Piispanen and Tuomo Alapieti

		Α							
	I	II	- III	IV	v	VI	nality		
SiO_2				151	061	003	.986		
TiO ₂	.746	.194	.240	.377	001	.197	.832		
Al_2O_3	.177	023	.832	.084	.034	.006	.732		
Fe ₂ O ₃	.504	.698	014	.193	039	149	.802		
FeO	.941	.041	.191	.089	.112	.056	.948		
MnO	.798	029	.145	.167	.444	.055	.887		
MgO	.481	.474	.281	.528	.012	104	.825		
CaO	.887	.028	.397	.018	047	065	.952		
Na ₂ O	.249	597	.080	004	.088	.434	.621		
K ₂ O	683	.275	.192	093	.100	324	.703		
P_2O_5	.489	.333	.427	.430	.216	.210	.807		
H ₂ O+	.112	.774	003	.123	089	.010	.635		
H_2O —	.143	.688	.165	005	.271	.074	.599		
	4.748	2.440	1.620	.733	.364	.426	10.330		

Table 1. cont.

		В		Commu-
	I	II	III	nality
SiO_2	820	.236	211	772
TiO_2	.678	.062	.468	.683
Al_2O_3	.392	552	228	.511
Fe ₂ O ₃	.231	.098	.718	579
FeO	.802	.045	.073	.651
MnO	.102	085	.554	325
MgO	.826	174	.162	739
CaO	.674	488	055	695
Na ₂ O	107	736	.264	.623
$K_{2}O$	356	.707		.634
P_2O_5	.481	026	.149	.255
H_2O^+	.664	.102	.138	.471
H_2O —	.121	.231	.095	.077
	3.956	1.758	1.300	7.014

			В		Commu-
	I	II	III	IV	nality
SiO_2	550	.059		664	868
TiO ₂	.660	083	.469	.147	684
Al_2O_3	.052	.175	055	.796	670
Fe ₂ O ₃	.226	083	.734	037	508
FeO	.704	164	.112	.341	651
MnO	.065	.061	.582	.051	340
MgO	.769	.091	.164	.359	755
CaO	.461	.238	.033	.661	707
Na ₂ O	098	.733	.229	.188	635
K_2O		707	012	300	.000
P_2O_5	.543	.077	.093	.047	312
H_2O^+	.748	031	.068	.026	566
$H_2O^{}$.058	286	.146	.030	.107
	3.111	1.270	1.350	1.912	7.643

A factor analysis study of the major element geochemistry of granitic rocks 147

Table 1. cont.

			Commu			
	I	II	III	IV	V	nality
SiO_2		.065	332	- 674	217	 001
TiO ₂	.643	085	458	162	- 178	.881
Al2O3	.067	145	- 085	823	.110	.688
Fe ₂ O ₃	.278	- 129	707	000	.000	.709
FeO	502	- 060	199	000	.000	.602
MnO	- 005	070	.102	.230	017	.735
MgO	668	127	.020	.018	131	.414
CaO	.000	.107	.189	.337	378	.757
Nac	.310	.302	.087	.609	416	.738
Na ₂ O	.002	.660	.204	.259	.343	.662
K_2O	297	746	066	281	.188	.763
P_2O_5	.602	.047	.051	.100	.019	377
H_2O^+	.757	030	.043	.055	145	601
H_2O-	.092	307	.116	.046	.024	.119
	2.588	1.258	1.358	1.868	.976	8.047
		1. m		В		Commu-

	В							Commu-
	I	II	III	IV	V	VI		nality
SiO_2		031	326	634	288	123		.886
TiO_2	.654	015	.450	.133	.172	.117		.691
Al_2O_3	.072	.214	086	.800	.142	054		.721
Fe_2O_3	.270	.063	.665	025	072	.293		.611
FeO	.524	202	.213	.203	.580	022		.739
MnO	.014	.066	.639	.009	.113	065	*	.431
MgO	.665	.102	.177	.257	.455	.014		.757
CaO	.274	.274	.041	.469	.627	.098		.775
Na_2O	035	.756	.143	.191	081	166		.663
K_2O	240	679	.002	123	482	.129		.782
P_2O_5	.581	.143	.009	.055	.054	.136		.383
H_2O^+	.772	034	.051	.050	.118	037		.618
H_2O-	.055	126	.053	.000	.009	.496		.268
	2.572	1.250	1.272	1.444	1.344	.442		8.326

Table 1. cont.

		С		Commu-
	I	II	III	nality
SiO_2		.138	263	797
TiO ₂	.655	.093	.519	708
Al_2O_3	.449	494	239	.502
Fe ₂ O ₃	.240	.105	.702	.561
FeO	.739	.157	.234	.625
MnO	.136	096	.576	.359
MgO	.740	247	.155	.632
CaO	.732	409	.008	.703
Na ₂ O	092	799	.159	.673
K_2O	329	.728	047	.641
P_2O_5	.521	021	.198	.311
H_2O^+	563	.113	.135	.348
H_2O —	.173	.286	.143	.132
	3.780	1.808	1.403	6.991

148 Risto Piispanen and Tuomo Alapieti

Table	1	- continued	
-------	---	-------------	--

			С			Comr	nu-
	I	II	III	IV		nali	ty
SiO_2		046		405		.84	1
TiO ₂	.330	.153	.568	.503		.70	8
Al2O3	.672	306	119	.032		.56	0
Fe ₂ O ₃	041	.065	.689	.285		.56	2
FeO	.566	.313	.367	.349		.67	5
MnO	.126		.630	022		.41	7
MgO	.446	177	.159	.664		.69	6
CaO	.777	207	.140	.280		.74	5
NaoO	.095	809	.113	044		.67	9
K ₂ O		.684	020	305		.68	0
P ₂ O ₅	.238	.008	.194	.504		.34	8
H ₂ O+	.076	.075	.058	.762		.59	6
H_2O-	.018	.293	.164	.139		.13	2
	2.408	1.514	1.628	2.091		7.64	0
			С			Comr	nu-
	I	II	III	IV	v	nali	ty
SiO	611	.061	388			.87	6
TiO	.119	076	.521	.507	.404	.71	2
AlaOa	.790	.183	069	.087	.032	.67	1
Fe ₂ O ₃	011	133	.699	.305	022	.60	0
FeO	.168	107	.271	.336	.741	.77	5
MnO	.023	.102	.610	023	.205	.42	5
MgO	.319	.220	.141	.674	.268	.69	6
CaO	579	288	109	296	489	.75	6
NavO	.280	.703	179	030		.68	6
K ₂ O	260	742	022	296	124	.00	6
PoOs	153	.012	.178	.514	.175	34	9
H ₀ O+	024	- 069	.046	768	.063	60	12
H2O-	.077	368	.175	.164	037	.20	0
	1.657	1.398	1.489	2.183	1.348	8.07	5

	С						Commu-
	I	II	III	IV	v	VI	nality
SiO_2	610	.064	378	308	409		.876
TiO ₂	.113	064	.491	.326	.418	.445	.736
Al_2O_3	.789	.182	077	.043	.041	.084	.673
Fe ₂ O ₃	002	134	.723	.267	.009	.096	.621
FeO	.163	120	.254	.205	.752	.251	.776
MnO	.019	.107	.599	078	.214	.058	.426
MgO	.339	.194	.170	.631	.324	.169	.713
CaO	.588	.259	.123	.261	.527	.033	.775
Na ₂ O	.278	.722	.157	042		.058	.701
K ₂ O		721	040		176	.029	.738
P_2O_5	.139	.042	.124	.311	.171	.563	.479
H_2O^+	.043	085	.079	.725	.110	.235	.608
H_2O-	.084	375	.200	.163	027	.010	.215
	1.683	1.380	1.468	1.542	1.483	.781	8.338

	Α	В	$\label{eq:constraint} \begin{array}{c} C \\ \hline \\ - \mathrm{Si, Ti, Al, Fe^{2+}, Mg,} \\ \mathrm{Ca, P, H_2O^+} \end{array}$	
Ι	—Si, Ti, Fe ³⁺ , Fe ²⁺ , Mn, Mg, Ca, —K,P	—Si, Ti, (Al), Fe ²⁺ , Mg, Ca, P, H ₂ O ⁺		
II	${ m Fe}^{3+}, { m Mg}, -{ m Na}, { m H}_2{ m O}^+, { m H}_2{ m O}^-$	—Na, K, Al, (—Ca)	—Al, —Ca, -—Na, K	
III	—Si, Al, P	Ti, Fe ³⁺ , Mn	Ti, Fe^{3+}, Mn	
I	—Si, Ti, Fe ³⁺ , Fe ²⁺ , Mn, Mg, Ca, —K, P	—Si, Ti, Fe ²⁺ , Mg, (Ca), P, H ₂ O ⁺	—Si, Al, Fe ²⁺ , Mg, Ca	
II	${ m Fe^{3+}, Mg, -Na, H_2O^+, H_2O^-}$	Na, —K	—Na, K	
III	—Si, Al, Ca, P	Ti, Fe ³⁺ , Mn	Ti, Fe ³⁺ , Mn	
IV	(Na), P	—Si, Al, Ca	$\mathrm{Ti,Mg,P,H_{2}O^{+}}$	
I	—Si, Ti, Fe ³⁺ , Fe ²⁺ , Mn, Mg, Ca, — K, P	—Si, Ti, Fe ²⁺ , Mg, P, H_2O^+	—Si, Al, Ca	
II	${ m Fe}^{3+}$, Mg, —Na, H ₂ O ⁺ , H ₂ O ⁻	Na, K	Na, —K	
III	—Si, Al, P, (Ca)	Ti, Fe^{3+}, Mn	Ti, Fe^{3+}, Mn	
IV	P, (Ti), (Mg)	—Si, Al, Ca	Ti, Mg, P, H_2O^+	
V	(Mn), H ₂ O-	—Fe ²⁺ , —Ca	$\mathrm{Fe}^{2+},\mathrm{Ca}$	
I	—Si, Ti, Fe ³⁺ , Fe ²⁺ , Mn, Mg, Ca, —K, P	—Si, Ti, Fe ²⁺ , Mg, P, H ₂ O ⁺	—Si, Al, Ca	
II	${ m Fe^{3+}}$, (Mg), —Na, H ₂ O ⁺ , H ₂ O ⁻	Na, —K	Na, —K	
III	—Si, Al, (Ca), P	Ti, Fe ³⁺ , Mn	Ti, Fe ³⁺ ,Mn	
IV	Mg, P, (Ti)	—Si, Al, Ca	Mg, H_2O^+	
V	Mn	${ m Fe}^{2+}, { m Mg}, { m Ca}, -{ m K}$	Fe^{2+} , Ca	
VI	Na, (—K)	H_2O^-	P, (Ti)	

Table 2. Summary of data from Table 1 converted into symbols for the most significant chemical components contributing to the generation of each individual factor. For the meaning of A, B, and C see Table 1. Cases from 3 to 6 factors are presented.

the generation of an individual factor. The listed components regularly have loadings of 0.4 or higher.

Both rapakivis and the total group of all the granitic rocks have, as their first factor, a factor in which Fe^{2+} , Mg, Ca, Ti and negative silica have significant loadings. On the basis of the most important participating components the factor could, perhaps, be adequately called the femic factor. In rapakivis this factor has a very large eigenvalue (4.748 to 5.190) implying that a great deal of the variation of the chemical composition of the rapakivis can be described in terms of this single factor. The factor score pertaining to this factor for any rapakivi would reveal a great deal about the relationship of that particular rapakivi to the others.

In summary, the factor analysis among the rapakivis reveals one clear and prominent factor and some additional less clear and less significant factors. This situation is obviously a result of the homogeneity of the rock-group in comparison with the heterogeneity of the total group of granites.

In addition to the first, the femic factor, the rapakivis exhibit a second factor in which many of the same components which formed the first factor have large loadings. The most significant exception is Na₂O which

150 Risto Piispanen and Tuomo Alapieti

here makes its first appearance, potassium being already present under the first factor. The allocation of soda and potassium to different factors in the rapakivis is discussed in association with the factors for the total family of the granitic rocks.

The third factor for the rapakivis is a negative silica-alumina factor. In this the arithmetically induced negative correlation between the two largest chemical components is obviously the reason for the formation of the factor.

In contrast with the rapakivis, the total group of granites have a second factor that carries large loadings for both potassium and soda. This factor is a result of the strong (-0.589) negative correlation of the components in the granites. Soda and potassium are also negatively correlated in the rapakivis, but the numerical value of the corre-

lation (-0.521) there does not seem to be large enough to make the components fall under a common factor (in order to save space the correlation matrices are not reproduced here). A geological implication of these relationships is, perhaps, to indicate the ability of the rapakivi alkali feldspar to carry more soda either as perthite or antiperthite or as a homogeneous solid solution than that of the other granitic rocks.

As the third factor the total group of granites show, as a rule, a factor in which Ti, ferric iron and MnO have large loadings. This factor does not make its appearance among the rapakivis. The factor is most easily interpreted as a biotite factor containing the femic elements of biotite and excluding CaO which falls under the first factor, the femic factor, where hornblende is probably the main mineral representative.

REFERENCES

- Chayes, F. (1962) Numerical correlation and petrographic variation. J. Geol. 70: 440-452.
- Chayes, F. and Kruskal, W. (1966) An approximate statistical test for correlations between proportions. J. Geol. 74: 692-702.
- Gould, S. J. (1967) Evolutionary patterns in Pelycosaurian reptiles: a factor analytic study. Evolution, 21: 385-401.
- Imbrie, J. and Purdy, E. G. (1962) Classification of modern Bahamian carbonate sediments. AAPG Symposium on Classification of Carbonate Rocks, Memoir 1: 253—272.
- Koch, G. S. and Link, R. F. (1971) Statistical Analysis of Geological Data. Vol. 2. J. Wiley &

Sons. New York.

- Krumbein, W. C. and Graybill, F. A. (1965) An Introduction to Statistical Models in Geology. McGraw-Hill. New York.
- Piispanen, R. (1977) Major element geochemistry of the granitic rocks. Bull. Geol. Soc. Finland 49 (2): 73—78.
- Saxena, S. K. (1969) Silicate solid solutions and geothermometry. 4. Statistical study of chemical data on garnets and clinopyroxene. Contr. Min. Petr. 23: 140—156.

Manuscript received 23 June, 1977