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Abstract
The Kangasjärvi Zn-Cu deposit is a highly deformed and metamorphosed Paleoprot-
erozoic volcanogenic massive sulphide (VMS) deposit located in the Vihanti-Pyhäsalmi 
base metal mining district of central Finland. The host sequence to the deposit, referred 
to as the Inner Volcanic Sequence (IVS), is comprised of a bimodal suite of metavol-
canic rocks and a regionally extensive tonalite-trondhjemite gneiss (sub-volcanic intru-
sions?). A separate and perhaps younger sequence of mafi c volcanic rocks, with irreg-
ular intervals of undifferentiated intermediate to felsic schists and metalimestones, re-
ferred to as the Outer Volcanic Sequence (OVS), are separated from the IVS sequence 
by intervals of metagreywacke and U-P-bearing graphitic schists. 

A stratigraphic scheme for rocks within the IVS is proposed based on outcrop ob-
servations, locally preserved volcanic textures, aspects of seafl oor-related hydrother-
mal alteration and lithogeochemistry. In this scheme, rare andesites form the lower-
most volcanic stratigraphy and are overlain by typical island-arc basalts that were erupt-
ed in a subaqueous setting. Tonalite-trondhjemite subvolcanic intrusions were local-
ly emplaced within andesites and coeval rhyolites were extruded on the basaltic sub-
strate. The extrusion of rhyolites, including high-silica rhyolites, was coeval with region-
al-scale, pre-metamorphic seafl oor hydrothermal alteration and local sulphide minerali-
zation. Extensively altered rhyolites envelope massive sulphides and are underlain by al-
tered basalts. The latter rocks are now characterized by a variety of low-variance meta-
morphic mineral assemblages (e.g. orthoamphibole-cordierite rocks) and defi ne a do-
main of intense pre-metamorphic chlorite ± sericite alteration in the stratigraphic foot-
wall of the deposit. The altered nature of these rocks is attributed to reaction with sea-
water-related hydrothermal fl uids within a zone of upfl ow at or near the seafl oor.

The fundamental controls on convective hydrothermal circulation and subsequent 
alteration and massive sulphide mineralization at Kangasjärvi, and possibly elsewhere in 
the district, share many characteristics with other well-described, ancient VMS depos-
its (e.g. massive sulphide deposits in the Flin Flon Belt, Manitoba, Canada). These char-
acteristics include: 1) an association with bimodal volcanism developed in extension-
al settings; 2) a close spatial association with regionally extensive felsic subvolcanic in-
trusions; and 3) petrogenesis of ore-associated volcanic rocks (e.g. high-silica rhyolites, 
felsic subvolcanic intrusions) indicative of substantial heat transfer from the mantle to 
the upper crust and the development of anomalous thermal corridors. These features 
translate into geochemically distinctive rock types that, when combined with aspects of 
stratigraphy and pre-metamorphic alteration, may be used to develop regional explo-
ration strategies in the Vihanti-Pyhäsalmi district.
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1. Introduction

Paleoproterozoic rocks in central Finland are 
host to many recently active and past-produc-
ing Zn-Cu mines and prospects (Gaál, 1990) 
and comprise a geologically and economical-
ly important base metal metallogenic belt re-
ferred to as the Vihanti–Pyhäsalmi district. 
In this polydeformed and highly metamor-
phosed belt, massive Zn-Cu sulphide deposits 
are hosted by ca. 1.9 Ga bimodal volcanic se-
quences (Kousa et al., 1994) and are associated 
with distinctive metamorphosed alteration ha-
los (e.g. orthoamphibole-cordierite rocks) in-
dicative of seafl oor-related hydrothermal al-
teration (Huhtala, 1979; Mäki, 1986; Ekdahl, 
1993; Lahtinen, 1994; Roberts et al., 2003). 
Hence, the bulk of these deposits are consid-
ered to be syngenetic, volcanogenic massive 
sulphide (VMS) deposits. 

Although recent workers have shown that 
syntectonic mobilization of ore has occurred on 
the mine scale (metres to hundreds of metres; 
Mäki & Luukas, 2001), the geological and geo-
chemical signature of syngenetic ore formation 
remains the most signifi cant exploration tool on 
a regional scale. However, due to a combination 
of polyphase deformation, upper amphibolite 
to granulite facies metamorphism and poor ex-
posure, the fundamental controls on syngenet-
ic mineralization in the district remain unclear. 
For example, several geologic relationships that 
are considered essential to VMS exploration, 
such as the depositional setting and stratigra-
phy of ore-associated host sequences (e.g. Allen 
et al., 1997) and the style and extent of system-
scale alteration (e.g. Galley, 1993; Brauhart et 
al., 2001), have not been described in detail. 

This paper presents textural descriptions 
and stratigraphic relationships of ore-associat-
ed rocks in the Kangasjärvi area, and these are 
used to elucidate the stratigraphy of the min-
eralized host sequence. Whole-rock geochemis-
try is used to classify least-altered volcanic and 
plutonic rock types, and immobile elements are 
employed to differentiate their altered equiva-
lents (e.g. orthoamphibole-cordierite rocks). 

Immobile-element chemostratigraphy, in com-
bination with the identifi cation of pre-meta-
morphic, seafl oor-related alteration facies prox-
imal to Zn-Cu mineralization, is used to resolve 
the stratigraphic younging direction of the mine 
sequence. Within this stratigraphic framework, 
the petrogenesis of key volcanic and plutonic 
rocks is then examined to determine the pale-
otectonic setting in which VMS-style minerali-
zation formed. These data provide insights into 
the evolution of ca. 1.9 Ga island arc systems in 
central Finland and highlight the fundamental 
controls on syngenetic mineralization in the Vi-
hanti–Pyhäsalmi district.

2. Geological background
2.1. Geology of the Vihanti–Pyhäsalmi district

The Vihanti–Pyhäsalmi district is a moder-
ate-size (~100 Mt) base metal mining camp in 
central Finland (Fig. 1) (Huhtala, 1979; Gaál, 
1990). The volcanic host rocks to these deposits 
comprise remnants of primitive ca. 1.93–1.91 
Ga island arc complexes within the Savo Belt of 
the Lower Svecofennian domain (Kousa et al., 
1994; Lahtinen, 1994). The Savo Belt is a col-
lage of arc-related volcano-sedimentary rocks 
accreted to the southwestern margin of the 
Karelian Archean craton and stitched by a varie-
ty of syn- to post-orogenic granitoids (Lahtinen, 
1994). The eastern margin of the Savo Belt pres-
ently represents a major northwest- to south-
east-trending Proterozoic suture zone (Raahe-
Ladoga Zone) between the Karelian Archean 
craton to the northeast and other Paleoprotero-
zoic terranes to the southwest (Koistinen, 1981; 
Lahtinen, 1994). 

General models for the evolution of the Sve-
cofennian crust and orogen (Lahtinen, 1994; 
Lahtinen & Huhma, 1997; Nironen, 1997) in-
dicate that a system of several arcs, basins and 
subduction zones were located to the present 
southwest of the Archean craton prior to 1.9 
Ga. Volcanic and plutonic rocks of the Savo 
Belt, and associated volcanogenic massive sul-
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Fig. 1. Geological map of the south-central portion of the Vihanti–Pyhäsalmi district (V-P; see inset) indicating the 
location of major massive sulphide deposits and the grade and boundaries of metamorphic blocks (modifi ed after 
Lundqvist et al., 1996). 
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phide deposits, are thought to have formed in 
this realm at the active margin of an older (ca. 
~2.0 Ga) Paleoproterozoic nucleus (Lahtin-
en, 1994; Lahtinen & Huhma, 1997; Niro-
nen, 1997). The geology and tectono-metamor-
phic history of this complex suture zone is de-
scribed elsewhere (Lahtinen, 1994 and referenc-
es therein).

2.2. Geology of massive sulphide deposits in the 
Vihanti–Pyhäsalmi district

Massive Zn-Cu sulphide deposits are typically 
hosted by rhyolites in bimodal volcanic succes-
sions which also include tholeiitic basalts, ba-
saltic andesites (Lahtinen, 1994) and lesser oc-
currences of andesites (Kangasjärvi; Rasilainen, 
1991). These mineralized bimodal successions 
occur discontinuously within the Archean-Pro-
terozoic suture zone (Fig. 1). Massive sulphide 
deposits are spatially associated with, or envel-
oped by, altered rocks comprised of a variety 
of unusual metamorphic mineral assemblages 
(e.g. cordierite-orthoamphibole rocks), ranging 
from the amphibolite to granulite metamorphic 
facies. Regardless of metamorphic grade, how-
ever, host rocks preserve the geochemical signa-
ture of pre-metamorphic, seafl oor-related hy-
drothermal alteration (Huhtala 1979; Mäki, 
1986; Ekdahl, 1993; Lahtinen, 1994, Roberts 
et al., 2003). 

Due to complex deformation, detailed strati-
graphic relationships between and within isolat-
ed volcanic successions (e.g. way-up directions, 
unit correlations) are diffi cult to determine with 
certainty. Furthermore, the basement to these 
bimodal successions remains enigmatic. Most 
volcanic rocks appear to be underlain by volumi-
nous, coarse-grained gneissic tonalites. Textural, 
geochemical and geochronological data indicate 
that these rocks are likely the subvolcanic equiv-
alent of ore-hosting rhyolites (Lahtinen, 1994; 
Lahtinen & Huhma, 1997). However, contacts 
between gneissic tonalites and country rocks are 
rarely exposed or are strongly deformed; hence, 
the setting of these intrusions (i.e. host rocks, 

character of contact aureole, depth of emplace-
ment) is poorly understood.

2.3. Host sequence to the Kangasjärvi deposit

The Kangasjärvi Zn-Cu deposit is situated in 
the southern extension of the Vihanti–Pyhäsal-
mi district (Fig. 1) and is one of several small 
satellite deposits (≤ 3 Mt) broadly similar in 
character (i.e. host rocks, pre-metamorphic al-
teration styles) to the much larger Pyhäsalmi 
Zn-Cu deposit (68 Mt). Mafi c volcanic and 
volcaniclastic rocks dominate the map pattern 
in the vicinity of the deposit, while the depos-
it itself is hosted within an apparently thin and 
extensively altered “corridor” of felsic volcanic 
rocks (400 x 3000 m) (Fig. 2). Pervasive, pre-
metamorphic, seafl oor-related hydrothermal al-
teration of rocks in this corridor is expressed by 
metamorphic assemblages (e.g. biotite + silli-
manite ± garnet ± cordierite ± staurolite) that 
are the prograde equivalent of chlorite ± sericite 
alteration. An apparently thick (~1.3 km) suc-
cession or mafi c volcanic rocks appears to form 
the core of a megascopic F

2
-F

3
 fold complex, 

such that felsic volcanic rocks to the north of de-
posit (Fig. 2) may be a fold or thrust repetition 
of the felsic volcanic rocks that host ore. Felsic 
volcanic rocks in this region underwent perva-
sive, pre-metamorphic, low-temperature seawa-
ter-related Na-K metasomatism (Roberts, 2002) 
and hence are thought to represent the region-
al stratigraphic hanging wall to the Kangasjärvi 
Zn-Cu deposit. To the southwest of the depos-
it, the volcanic sequence is truncated by a large 
(map pattern area ~30 km2), coarse-grained to 
locally mylonitic gneissic tonalite, locally re-
ferred to as quartz-plagioclase gneiss (QPG). 
Contacts between the QPG and country rocks 
are strongly deformed (see below), indicating 
that this unit was broadly coeval with the bi-
modal volcanic sequence (i.e. pre-collisional). 
The largely bimodal sequence of volcanic rocks 
that host the Kangasjärvi Zn-Cu deposit (Fig. 
2), bound to the south by the QPG and to the 
west and north by an interval of graphitic schist 
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Fig. 2.Fig. 2.Fig.  Geological map of the Kangasjärvi area showing the location of the Kangasjärvi Zn-Cu deposit (see inset), the  2. Geological map of the Kangasjärvi area showing the location of the Kangasjärvi Zn-Cu deposit (see inset), the  2.
Inner Volcanic Sequence (IVS) and the Outer Volcanic Sequence (OVS) (modifi ed after Luukas et al., 2002).
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(see below), is referred to as the Inner Volcanic 
Sequence (IVS). 

A separate sequence of volcanic and sedimen-
tary rocks, separated from the IVS by an inter-
val of sulphide and U-P-bearing graphitic schist, 
occurs outboard of the F

2
-F

3
 fold complex and 

is referred to as the Outer Volcanic Sequence 
(OVS; see Fig. 2). The OVS is comprised of 
mafi c volcanic rocks with irregular intervals of 
intermediate to felsic schists of uncertain vol-
canic, volcaniclastic or clastic origin, migmatit-
ic metasediments (metagreywacke) and locally 
dolomitic calc-silicate rocks. Whether the sul-
phide- and U-P-bearing graphitic schist repre-

sents a structural or stratigraphic contact is pres-
ently unknown due to poor exposure.

2.4. Tectonic and metamorphic setting

Rocks in the Kangasjärvi region underwent a 
protracted tectono-thermal history as evidenced 
by multiple phases of deformation (D

1
-D

4
) and 

the occurrence of low-pressure – high-tempera-
ture (Korsman et al., 1984; Hölttä, 1988; Rob-
erts, 2002) metamorphic mineral assemblag-
es. Structural relationships coupled with the re-
sults of conventional geothermobarometry sug-
gest that the peak of metamorphism, which re-

Fig. 3. Schematic southwest- to 
northeast-trending cross-section 
of the Kangasjärvi Zn-Cu depos-
it showing the distribution of rock 
types and the halo of pre-meta-
morphic alteration. 
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sulted in partial melting of favourable litholo-
gies, culminated in the upper-amphibolite facies 
(~700°C, ~5 kbar) broadly synchronous with 
D

2
-D

3 
(Roberts, 2002).

2.5. Deposit geology

The Kangasjärvi Zn-Cu deposit was mined by 
Outokumpu Oy for a total production of 86 
000 tonnes grading 5.12 % Zn, 0.06 % Cu, 
5.0 g/t Ag, 0.3 g/t Au and the total geolog-
ic resource of the deposit has been estimated 
at 300 000 metric tonnes (http://www.gsf.fi /
explor/zinc/kangasjarvi.htm). The deposit oc-
curs within the hinge region of a tight D

3
 an-

tiform (F
3
) with an axial plane that dips steeply 

to the southwest and plunges forty-fi ve degrees 
to the southeast (Fig. 2 and 3). The ore is pre-
dominantly massive and is comprised of pyrite 
+ sphalerite ± pyrrhotite ± chalcopyrite ± galena 
± native gold and silver. Sulphides are strong-
ly recrystallised and annealed, with pyrite lo-
cally forming cubic porphyroblasts within a 
sphalerite ± pyrrhotite ± chalcopyrite matrix. 
Gangue minerals include quartz, cordierite, an-
thophyllite, garnet, sillimanite and sericite, and 
are commonly included in the ore as angular to 
milled silicate aggregates. 

The ore is hosted by felsic volcanic rocks 
comprised of a variety of metamorphic min-
eral assemblages that include combinations of 
quartz, plagioclase, sillimanite, biotite, garnet, 
potassium feldspar, muscovite, staurolite and or-
thoamphibole (Roberts, 2002). These rocks are 
interpreted to be the metamorphic equivalent 
of hydrothermally altered rhyolites (Rasilainen, 
1991). A distinctive suite of mafi c to intermedi-
ate orthoamphibole-cordierite rocks lies adjacent 
to this package and is a typical metamorphic as-
semblage proximal to massive sulphide deposits 
elsewhere in the district (Huhtala, 1979).

3. Rock types and textures

The following is a brief description of textures 
and stratigraphic relationships for rock types in 

the Kangasjärvi area (see also Roberts, 2002), 
with an emphasis on rocks proximal to the mas-
sive sulphide deposit in the IVS sequence. Mul-
tiple phases of ductile deformation have oblit-
erated textures relating to stratigraphic facing 
direction and complicate the interpretation of 
unit dimensions (i.e. layer thickness) and the 
apparent repetition of units (i.e. primary repe-
tition or fold repetition). In the following de-
scriptions, therefore, emphasis is placed on tex-
tures observed in outcrops and rock-type asso-
ciations (i.e. adjacent rock types) determined 
from outcrops and drill hole profi les.

3.1. Mafi c volcanic rocks (IVS and OVS)

A variety of variably deformed volcanic and vol-
caniclastic textures are observed for mafi c rocks 
in the Kangasjärvi area (IVS and OVS): 1) pil-
low lavas (Fig. 4a); 2) porphyritic lava fl ows or 
sills (uralite porphyries); 3) mafi c volcaniclas-
tic rocks (agglomerates; Fig. 4b-c); and 4) de-
formed mafi c dykes hosted by basalts (IVS and 
OVS) and rhyolites (IVS). In both the IVS and 
OVS, the presence of pillow lavas and mafi c vol-
caniclastic rocks with epidote-altered scoria sug-
gest that mafi c volcanism occurred in a subaque-
ous setting. Mafi c volcaniclastic rocks in the IVS 
commonly contain andesite clasts (Fig. 4b), sug-
gesting that basalts were erupted on an andesit-
ic substrate (see below).

3.2. Intermediate rocks (IVS)

A geochemically distinct suite of andesites 
(“footwall andesites”) occurs adjacent to, and 
interlayered with, mafi c volcanic and volcani-
clastic rocks in the altered sequence of rocks 
that is thought to represent the stratigraph-
ic footwall to the deposit (see below). Foot-
wall andesites in outcrop are rare and therefore 
their mode of occurrence (lavas, sills?) and con-
tact relationships are unknown. Altered footwall 
andesites adjacent to altered basalts are com-
prised of similar metamorphic mineral assem-
blages (e.g. orthoamphibole–cordierite), hence 
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both rock types were similarly affected by pre-
metamorphic, seafl oor hydrothermal alteration 
(see below).

3.3. High-Ti andesites and dacites (IVS)

A distinct suite of high-Ti andesites and dac-
ites occurs interlayered with felsic volcanic rocks 
along strike from the deposit (“altered corridor”). 

Similar to footwall andesites, these rocks are only 
observed in drill core and therefore their mor-
phology and contact relationship are unknown.

3.4. Felsic volcanic rocks (IVS)

Outcrops of felsic volcanic rocks are rarely ob-
served in the vicinity of the now-fi lled Kan-
gasjärvi open-pit mine. Geochemically similar 

Fig. 4. Outcrop photographs of mafi c and felsic volcanic rocks from the IVS and OVS. a) Outcrop of deformed pillow 
lava with irregular calc-silicate-bearing pillow rims and clasts (OVS?; 3463795E, 7038743N). b) Mafi c volcaniclastic 
rock with sub-rounded, matrix-supported andesitic clasts (IVS; 3456640E, 7032050N). c) Well-developed stretch-
ing lineation described by sub-angular, matrix-supported felsic clasts in a mafi c matrix (OVS; 3463420E, 7038400). 
d) Outcrop of massive, coherent quartz ± plagioclase-phyric high-silica rhyolite HSRa (3456780E, 7033100N, sam-
ple K37). e) Weakly deformed, blocky rhyolite breccia (in-situ hyaloclastite?). Darker coloured clasts locally display a 
jigsaw-like fi t with adjacent clasts (3455650E, 7034030N, sample K120). f) Strongly deformed rhyolite breccia com-
posed of plagioclase ± quartz-phyric clasts within a more micaceous matrix (3456020E, 7034130N, sample K25).
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rhyolites in the regional stratigraphic hanging 
wall consist of several distinctive textural varie-
ties: 1) coherent, quartz-phyric rhyolite lavas or 
sills (Fig. 4d); 2) weakly deformed, blocky rhyo-
lite breccias (Fig. 4e); 3) deformed, plagioclase- 
± quartz-phyric rhyolite breccias (Fig. 4f ); and 
4) deformed rhyolite layers or lobes within a tuf-
faceous matrix. Similar to mafi c volcanic rocks, 
strong deformation and poor exposure hinders 
detailed reconstruction of volcanic facies. In this 
region, however, a general transition from coher-
ent, sill-like, quartz-phyric rhyolites to blocky 
rhyolite breccias (in-situ hyaloclastite?) and tuf-
faceous rhyolites may represent a textural transi-
tion from the inner core of a coherent felsic vol-
canic dome complex to a brecciated carapace.

3.5. Gneissic tonalites (IVS)

Gneissic tonalites (QPG) are moderately to 
strongly foliated, coarse-grained quartz + plagi-
oclase-bearing rocks with minor biotite ± horn-
blende. Outcrops of QPG are typically massive 
and contacts with country rocks are rarely ex-
posed. Two different QPG – country rock con-
tacts have been observed: 1) strongly foliated to 
locally mylonitic QPG in sharp contact with an 
intermediate, fi ne-grained, banded hornblende 
+ plagioclase + quartz ± biotite-bearing rock, 
similar in bulk composition to the footwall an-
desite suite; and 2) thin 0.1–1.0 m wide, iso-
clinally folded dykes or sills of moderately sili-
ceous quartz-phyric rhyolite interfi ngered with 
the QPG. In the fi rst occurrence, a sharp con-
tact between andesite and the QPG is inter-
preted to be a primary intrusive contact. Some 
banding within the andesite may represent pri-
mary layering, and hence it is inferred that the 
QPG intruded into the layered andesite. Irreg-
ular and highly deformed plagioclase + quartz 
+ epidote + Ca-amphibole + magnetite + pyrite 
veins (2–5 cm wide) occur within the andesite 
near the contact between these two units. This 
style of vein-like alteration is typical of magmat-
ic – hydrothermal alteration associated with fel-
sic intrusive complexes (e.g. Galley, 1996), and 

therefore may support the above hypothesis. In 
the latter instance, contacts between the QPG 
and rhyolite dykes or sills are clearly intrusive 
and deformed by the earliest recognizable phase 
of deformation (i.e. isoclinal F

2
 folds).

4. Lithogeochemistry
4.1. Sampling protocols, analytical methods 
and terminology

Surface samples were obtained using a sledge-
hammer or a portable diamond mini-drill. Pro-
fi les and geochemical samples in the vicinity of 
the mine were obtained from diamond drill 
holes archived at the Geological Survey of Fin-
land Loppi Core Facility. Large (2–4 kg) sam-
ples were collected and all weathered rinds and 
hammer marks were removed using a diamond-
edged saw. 

Whole-rock major and minor elements were 
determined using x-ray fl uorescence spectrome-
try (XRF). Trace elements were analysed by in-
ductively coupled mass spectrometry (ICP-MS) 
after dissolution of the sample by hydrofl uoric 
acid – perchloric acid treatment followed by a 
lithium metaborate/sodium perborate fusion of 
the insoluble residue. The estimated uncertain-
ty is 1–5% for major elements and 3–10% for 
trace elements.

The term “least-altered” is used to identi-
fy rocks that contain no visible sulphides (<0.5 
wt.% S), shear fabrics or metamorphic phases 
(prograde and retrograde) unlikely to occur in 
typical, unaltered metavolcanic rocks. Analyti-
cal data for representative least-altered litholo-
gies are presented in Table 1 and a summary of 
selected high fi eld strength element (HFSE) and 
rare earth element (REE) contents and their ra-
tios are given in Table 2. The entire geochemi-
cal database is available from the authors upon 
request.

In the following section, immobile trace-el-
ement ratios and patterns are presented to ex-
amine aspects of the paleotectonic setting and 
petrogenesis of mafi c and felsic igneous suites. 
Only samples that are deemed “least-altered” 
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Table 1. Whole-rock geochemistry of representative least-altered rocks from Kangasjärvi

Suite OVS 
B/BA

OVS 
B/BA

IVS 
B/BA

IVS 
B/BA

IVS 
B/BA

IVS
FWA

IVS
FWA

IVS
Ti-A

IVS
Ti-A

IVS
Ti-D

IVS
Ti-D

Sample 
ID

K144-
3

K60-
6

317-
172.05

028-
128.8

K137-
2

304-
217.4

027-
85.55

045-
77.6

046-
114.4

045-
47.5

047-
133

SiO
2

 51.3  55.7  50.7  52.1  54.3  63.6  62.8  58.6  59.1  65.9  66.6

TiO
2

  0.57   0.58   0.46   0.46   0.65   0.83   0.83   1.53  1.36   0.65   0.64

Al2O
3

 18.27  18.73  17.05  16.96  16.18  15.21  15.30  13.59  13.97  13.12  13.04

FeO  11.19   8.25  10.51  11.85  11.03   7.49   8.78  14.22  13.69  10.02   9.29

MnO   0.16   0.20   0.26   0.32   0.27   0.23   0.26   0.13   0.11   0.15   0.14

MgO   4.35   3.46   7.17   5.92   4.65   2.20   2.10   2.49   1.33   2.27   2.34

CaO   9.98   7.75  11.21   8.94   9.57   4.28   4.25   4.52   4.56   1.22   2.93

Na
2
O   3.02   4.42   1.87   2.81   2.77   5.20   4.81   3.61   4.28   4.68   4.66

K
2

K
2

K O   1.05   0.76   0.67   0.53   0.43   0.57   0.50   0.80   1.28   1.95   0.28

P
2
O

5
  0.07   0.14   0.07   0.08   0.11   0.41   0.38   0.45   0.32   0.09   0.09

S   0.000   0.008   0.037   0.069   0.000   0.057   0.077   0.226   0.368   0.117   0.161

Cr  n.a.  28   n.a. 126   n.a.   7  <5   n.a.   n.a.   n.a.   n.a.

Ni  12.7  15.3  47.7  52.5  29.1  <5.0  <5.0  <5.0  <5.0  10.1  10.6

Co  33.7  22.5  41.8  41.6  26.4  10.9  10.6  15.2  12.2   9.3   8.9

Sc  39.7  33.6  43.1  42.7  37.6  29.2  30.3  35.1  33.1  26.5  26.8

V 344 275 251 237 270  40  36  27  67 137 139

Cu  94  24  37  44  33  13   6  44  15  22  31

Zn  89  84 117 255 171 129  98  47  31  73  99

Rb  17  11  11   8   3   7   6  20  25 148   6

Ba 596 363 175 180 135 345 322 256 303 271 100

Sr 675 603 196 241 195 186 166 105 111  92  70

Ga  16.4  n.a.  13  n.a.  16.1  n.a.  n.a.  19.5  17.9  16.9  16.1

Ta  <0.20   0.24  <0.20  <0.20  <0.20  <0.20  <0.20   0.56   0.42   0.45   0.4

Nb   2.71   3.68   1.08   1.33   2.24   2.83   3.28   7.40   6.31   6.16   5.80

Hf   0.90   1.38   0.80   0.68   1.15   1.65   1.74   4.41   3.99   3.87   3.87

Zr  31.0  59.0  26.1  30.1  42.2  61.9  71.0 148 135 134 142

Y  15.2  15.4   9.90  11.2  14.9  26.8  28.6  56.4  42.6  28.2  38.5

Th   1.15   1.61  <0.50  <0.50   0.65   0.98   1.13   1.78   1.52   1.43   1.56

U   0.29   0.73   0.28   0.32   0.63   2.88   1.25   2.06   0.77   1.16   1.46

La   7.98   7.76   3.30   3.92   5.29   7.79   8.35  17.1  12.2  16.4  12.6

Ce  17.8  18.0   6.90   8.30  12.0  17.0  19.1  36.2  28.5  31.6  26.0

Pr   2.45   2.53   0.98   1.09   1.59   2.35   2.69   4.82   3.70   3.77   3.38

Nd  10.6  11.7   4.16   4.84   7.16  10.8   11.4  21.8  17.4  15.6  15.3

Sm   2.26   2.61   1.10   1.23   1.92   2.58  2.93   5.87   4.69   3.59   3.63

Eu   0.66   0.67   0.41   0.51   0.65   0.91  1.11   1.41  1.25   0.51   1.03

Gd   2.45   2.58   1.50   1.36   2.32   3.59  3.91   7.66  6.71   4.41   5.41

Tb   0.38   0.39   0.24   0.26   0.36   0.56  0.62   1.29  1.00   0.74   0.88

Dy   2.34   2.44   1.55   1.73   2.33   4.09  4.31   8.31  6.52   4.52   5.77

Ho   0.51   0.49   0.32   0.35   0.50   0.84  0.86   1.91  1.46   0.94   1.36

Er   1.55   1.46   1.10   1.16   1.41   2.69  2.80   5.88  4.36   3.06   4.04

Tm   0.23   0.23   0.17   0.18   0.24   0.39  0.41   0.83  0.64   0.50   0.58

Yb   1.51   1.51   1.10   1.23   1.65   2.64  2.89   5.51  4.49   3.40   4.12

Lu   0.22   0.24   0.16   0.19   0.24   0.43  0.42   0.92  0.66   0.60   0.6
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Table 1 (cont.)

Suite IVS
QPG

IVS Ra IVS
Ra

IVS 
Rb

IVS 
Rb

IVS 
Rc

IVS 
Rc

IVS 
Rd

IVS 
HSRa

IVS 
HSRa

IVS
HSRb

Sample 
ID

K11-
1

K7-
4

319–
248.3

K45-
1

028- 
157.2

043- 
52.3

K134-
1

K87-
1

K125-
1

045- 
14.1

047- 
164.4

SiO
2

 73.5  69.9  68.7  73.0  74.1  75.4  77.8  75.7  79.3  77.4  78.3

TiO
2 

  0.34   0.51   0.39   0.34   0.35   0.31   0.27   0.26   0.14   0.16   0.14

Al
2
O

3
 13.21  14.25  15.36  12.41  12.72  12.03  10.90  12.74  10.55  11.63  12.08

FeO   3.50   4.98   4.79   4.29   4.28   4.00   3.57   2.95   2.66   3.42   1.88

MnO   0.06   0.08   0.12   0.17   0.12   0.12   0.05   0.08   0.13   0.11   0.07

MgO   1.20   1.33   1.40   1.89   0.73   1.23   1.14   0.54   1.06   0.55   0.33

CaO   2.10   3.10   4.36   3.55   2.31   1.96   1.30   2.44   2.14   1.32   1.88

Na
2
O   4.46   4.09   3.50   2.41   4.18   3.58   3.79   4.37   2.60   4.45   4.09

K
2

K
2

K O   1.51   1.60   1.27   1.89   1.12   1.30   1.17   0.87   1.41   0.95   1.26

P
2
O

5
  0.09   0.14   0.12   0.10   0.08   0.05   0.04   0.05   0.01   0.02   0.01

S   0.064   0.078   0.100   0.068   0.079   0.020   0.000   0.008   0.000   0.039   0.016

Cr  <5  <5   n.a.  <5  <5   n.a.   n.a.  <5   n.a.   n.a.   n.a.

Ni  <5.0  <5.0   8.8   7.9  <5.0  <5.0  <5.0  <5.0  <5.0  <5.0  <5.0

Co   4.5   7.5   8.5   9.0   3.4   4.4   2.5   2.2  <0.5   1.9  <0.5

Sc  13.0  17.7  10.8  17.5  15.2  12.3  11.9  10.9  12.0   9.31   4.50

V  19  25  47   59  14   6   2   7   1  12   5

Cu  11  16  41   25   7   6   9  <5  <5   5  <5

Zn  29  59 100   95  34  50  69  34  83  37  18

Rb  25  21  17   24  15  17  13  15  29  15  12

Ba 447 464 554 237 361 547 174 316 499 388 466

Sr 199 145 479 168 147  90  73 109  36  53  46

Ga   n.a.   n.a.  16.2   n.a.   n.a.  12.8   9.0  n.a.  12.7  13.1  11.1

Ta   0.46   0.41   0.36   0.35   0.41   0.40   0.39   0.34   0.58   0.77   0.71

Nb   7.61   6.54   5.25   5.80   6.63   7.30   6.18   5.37   6.96  10.1   8.90

Hf   3.66   3.51   2.57   2.59   3.52   4.15   3.31   3.21   4.18   5.56   4.55

Zr 147 138  98 107 143 144 122 131 162 187 129

Y  31.2  27.1   17.3  28.8  29.0  32.8  28.2  23.2  32.4  36.1  42.1

Th   2.69   2.19   1.44   2.00   2.24   2.59   2.08   2.72   2.90   4.20   5.22

U   0.99   0.91   0.73   0.73   1.16   1.36   0.95   0.95   1.18   1.83   1.64

La  17.2  13.5  11.7  17.1  12.9  19.5  10.8  11.2  14.5  31.8  24.5

Ce  35.9  30.3  24.6  35.6  28.5  40.9  22.1  25.9  31.5  61.7  48.7

Pr   4.82   4.20   3.18   4.79   3.66   5.16   2.81   3.34   4.25   7.15   5.76

Nd  20.2  18.0  13.0  19.2  16.0  22.4  11.6  13.6  17.5  28.1  22.2

Sm   4.53   3.98   3.06   4.28   3.98   5.02   2.90   3.25   4.09   5.67   4.55

Eu   0.92   1.04   0.84   1.07   0.95   1.17   0.65   0.74   0.71   0.68   0.65

Gd   5.02   4.28   3.02   4.96   4.36   5.48   3.76   3.49   4.40   5.98   5.24

Tb   0.77   0.67   0.47   0.78   0.75   0.86   0.66   0.58   0.79   0.93   0.96

Dy   4.66   4.25   3.07   4.67   4.52   5.18   4.27   3.48   4.94   5.51   6.05

Ho   0.99   0.92   0.59   0.93   0.94   1.08   0.94   0.77   1.10   1.24   1.34

Er   2.98   2.64   1.80   3.03   2.96   3.44   2.73  2.32   3.37   3.67   4.27

Tm   0.45   0.40   0.26   0.43   0.43   0.53   0.43  0.37   0.51   0.65   0.62

Yb   3.28   2.80   1.84   3.10   3.00   3.84   3.04  2.66   3.74   4.49   4.52

Lu   0.47   0.44   0.26   0.46   0.43   0.54   0.46  0.39   0.56   0.75   0.69

Major element oxides recalculated on an anhydrous basis and reported in wt. %. 
FeO reported as total iron. 
Trace elements reported in ppm. 
Abbreviations: OVS = Outer Volcanic Sequence; IVS = Inner Volcanic Sequence; B/Ba = basalt/basaltic andesite; MD 
= mafi c dyke; FWA = footwall andesite; Ti-A = high-Ti andesite; Ti-D = high-Ti dacite; QPG= quartz-plagioclase 
gneiss; R = rhyolite (a-d denotes rhyolite types); HSR = high-silica rhyolite (a-b denotes high-silica rhyolite types); 
n.a. = not analysed.
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were employed when interpreting trace-element 
ratios or fractionation patterns unless otherwise 
stated. The major elements Si, Fe, Mn, Mg, Ca, 
Na, K and the metals Cu, Pb, Zn, Ag, Sn, As, Tl 
are generally considered mobile in seafl oor hy-
drothermal systems owing to a variety of water-
rock reactions involving the breakdown and re-
placement of primary igneous phases, infi ll or 
addition of new mineral phases and the precipi-
tation of sulphides and native metals. The REE, 
except for Eu, are generally considered immo-
bile, although they may become mobile, espe-
cially the light rare earth elements (LREE), dur-
ing intense alteration (Pearce, 1996). Due to 
low ionic potential, the low fi eld strength el-
ements (LFSE: Ba, Rb, Cs, Sr) are considered 
mobile, whereas the high fi eld strength elements 
(HFSE: Nb, Th, Zr, Hf, Y, Al, Ti) have high 
ionic potentials and are considered immobile 
(see review by Jenner, 1996).

Fig. 5. Modifi ed Zr/Ti-Nb/Y plot 
(Pearce, 1996) of Winchester and 
Floyd (1977) showing represent-
ative lithologies from the ((a) IVS 
and ((b) OVS. Rock type abbrevia-
tions are as follows: HSRb; high-sil-
ica rhyolite b; HSRa: high-silica rhy-
olite a; IVS Rhy: IVS rhyolites (in-
cluding Ra to Rd varieties); QPG: 
quartz-plagioclase gneiss (gneissic 
tonalite-trondhjemite); Ti-D: high-
Ti dacites; Ti-A: high-Ti andesites; 
FWA: footwall andesites; IVS B/Ba: 
IVS basalts and basaltic andesites; 
Int. Dyke; intermediate dykes; Fel. 
Schist; felsic schists; Int. Schist: in-
termediate schists; OVS B/Ba: OVS 
basalts and basaltic andesites.

4.2. Volcanic and intrusive rocks of the IVS and 
OVS sequence

Representative least-altered samples from the 
IVS sequence include subalkaline basalts, ba-
saltic andesites, andesites, high-Ti andesites and 
dacites, rhyodacites – rhyolites, high-silica rhyo-
lites and trondhjemitic to tonalitic gneisses (Fig. 
5a). The largely mafi c-dominated OVS is com-
prised of a suite of subalkaline basalts, basaltic 
andesites, intermediate schists and alkaline felsic 
schists (Fig. 5b) and lesser carbonaceous units 
(not shown). The geochemistry of intermediate 
and felsic schists from the OVS is not presented 
in this paper other than to note that their chem-
istry is distinct from IVS andesites and rhyolites 
(Table 2).
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4.2.1. IVS and OVS mafi c volcanic rocks

Mafi c volcanic rocks from the inner and out-
er volcanic sequence are characterized by low 
HFSE (Nb, Ta, Zr, Hf, Y) abundances (Table 
2) and share similar incompatible-element ra-
tios (e.g. avg. Zr/Y 

IVS
 = 2.5; Zr/Y 

OVS
 = 2.9) 

(Fig. 6; Table 2). Both sequences are depleted in 
HFSE and HREE relative to MORB, are weak-
ly LREE-enriched (avg. La/Ybn

IVS
 = 2.3; La/

Ybn
OVS

 = 3.7) and have elevated LILE relative 
to HFSE (range of Th/Nbn

IVS
 = 2.0-3.5; Th/

Nbn
OVS

 = 1.3-4.3; note that less than ~50 % of 
IVS samples and ~90 % of OVS samples have 
Th abundances above the detection limit of 0.5 
ppm) (“n” indicates normalized ratios; see Table 
2 for references). These features translate into 
negatively sloping MORB-normalized incom-
patible-element profi les with troughs at Nb, Zr-
Hf, ± Ti (Fig. 7a–b). Although both the IVS and 
OVS suites are similar, mafi c volcanic rocks of 
the OVS have consistently higher LILE (Sr, Ba, 
Rb, Th) and LREE abundances.

Fig. 6. Immobile-element binary plots for mafi c to inter-
mediate volcanic rocks from the IVS and OVS. See Fig. 
5 for key to rock-type abbreviations.

Fig. 7. MORB-normalized profi les for a) IVS basalts, b) OVS basalts, c) IVS footwall andesites, and d) high-Ti andes-
ites and dacites. N-MORB values from Sun and McDonough (1989).
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Least-altered mafi c volcanic rocks of both 
suites have major element compositions typ-
ical of low- to medium-K, subalkaline island 
arc tholeiites (Table 1). Within the sample 
suite, least-altered IVS basalts range in compo-
sition from primitive basalts to basaltic andes-
ites, whereas basalts from the OVS are generally 
more evolved (Fig. 8a). Least-altered IVS mafi c 

volcanic rocks typically have K
2

volcanic rocks typically have K
2

volcanic rocks typically have K O < 0.5 wt.%, 
whereas OVS samples have slightly higher K

2
whereas OVS samples have slightly higher K

2
whereas OVS samples have slightly higher K O 
values (~ 1 wt.% K

2
values (~ 1 wt.% K

2
values (~ 1 wt.% K O; Fig. 8b). Scatter of K

2
O; Fig. 8b). Scatter of K

2
O; Fig. 8b). Scatter of K O 

in the selected least-altered sample suite is in-
dicative of the mobility of this element. Both 
the IVS and OVS suites plot within the tholeiit-
ic fi eld on the discriminate diagram of Miyashi-
ro (1974) (Fig. 8c). Harker-type diagrams (Fig. 
9) show fractionation trends typical of island arc 
tholeiites (e.g. Perfi t et al., 1980). Lower FeO, 
TiO

2 
and higher Al

2
O

3
, CaO and Sr (Rb, Ba) 

at a given MgO value, broadly distinguish the 
OVS from the IVS suite. High Al

2
O

3
 in OVS 

basalts does not appear to be a function of pri-
mary magma composition, but is restricted to 
fractionated end-members. For both suites, Ni 
and Cr values are low (Ni < 100 ppm; Cr <200 
ppm) and, as shown for Ni, decrease with the 
fractionation of olivine (Fig. 9h). Several high 
Ni and Cr values may be partly due to olivine 
cumulation.

4.2.2. IVS Footwall andesites 

In comparison to mafi c volcanic rocks, the 
bulk composition of footwall andesites is rel-
atively uniform and unfractionated (Fig. 9). 
Least-altered andesites have low HFSE (Ta-
ble 2) and incompatible-element ratios sim-
ilar to IVS (and OVS) mafi c volcanic rocks 
(Fig. 6; Table 2). Footwall andesites have ele-
vated LILE relative to HFSE (range of Th/Nbn
= 2.1-3.2; Th < detection limit for one sample) 
and are weakly LREE enriched (avg. La/Ybn = 
2.1). These rocks have MORB-normalized in-
compatible-element profi les similar to IVS ba-
salts at higher relative HFSE and REE abun-
dances (Fig. 7c). 

Silica contents for least-altered footwall an-
desites range between 61-63 wt.% SiO

2
, K

2
, K

2
, K O 

is generally < 0.5 wt.% and Na
2
O contents 

are high (4.8–5.4 wt.% Na
2
O). Andesites plot 

within the tholeiitic fi eld in Figure 8c and are 
distinctive due to their relatively high P

2
O

5
 con-

tent (~0.4 wt.%). Similar incompatible-element 
ratios and low Sr (and Ba, Rb) contents suggest 

Fig. 8. Major element variation diagrams for mafi c to in-
termediate volcanic rocks from the IVS and OVS. Fields 
in a) from Le Bas et al. (1986), b) Gill (1981) and c) Mi-
yashiro (1974).
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that footwall andesites may have a similar par-
entage to IVS rather than OVS basalts. Hark-
er diagrams (Fig. 9) indicate that footwall an-
desites are depleted in FeO, V and Sc relative 
to IVS basalts, whereas TiO

2
 is moderately en-

riched.

4.2.3. IVS High-Ti andesites and dacites 

The major- and trace-element chemistry of 
high-Ti andesites and dacites in our sample 
suite is quite variable (Table 1 and 2) and may 
partly vary as a function of pre-metamorphic 

Fig. 9. Major- and trace-element Harker-type diagrams for mafi c to intermediate volcanic rocks from the IVS and 
OVS. Symbols as in Fig. 8.
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alteration as many of these rocks contain var-
iable proportions of biotite, garnet, cumming-
tonite and orthoamphibole. All high-Ti andes-
ites (TiO

2
 1.0–1.5 wt.%) share similar incom-

patible HFSE ratios (avg. Zr/Nb = 21.0; avg. 
Zr/Y = 3.1) as IVS basalts and footwall andes-
ites and have Zr/Ti ratios (~0.01–0.03) between 
those of mafi c and felsic volcanic rocks (0.002–
0.007 and 0.02–0.12, respectively). High-Ti 
andesites have major element abundances sim-
ilar to footwall andesites; however, apparently 
least-altered varieties (hornblende + plagiocla-
se + quartz + biotite + Fe-Ti oxide) are distin-
guished from these rocks by their higher FeO 
(11–14 wt.%) and TiO

2
 (1.3–1.6 wt.%) con-

tents. Least-altered high-Ti dacites (~65 wt.% 
SiO

2
) have similar incompatible-element ratios 

as high-Ti andesites and are also characterized 
by relatively high FeO (9–10 wt.%,) and TiO

2

(~0.65 wt.%) abundances. MORB-normalized 
incompatible-element patterns for high-Ti an-
desites and dacites are similar in profi le to those 
of IVS basalts and footwall andesites (i.e. arc sig-
nature) at higher relative REE and HFSE con-
tents (Fig. 7d). However, profi les for dacites are 
characterized by prominent negative Eu and Ti 
anomalies.

4.2.4. IVS Rhyodacites-rhyolites 

No systematic major- or trace-element distinc-
tion between rhyolites that preserve coherent, 
brecciated or “tuffaceous” textures is observed, 
possibly due to the ambiguity of these textures 
in outcrop and drill core. The only exception to 
this observation is a suite of high-silica, quartz-
phyric rhyolites (HSR

a
phyric rhyolites (HSR

a
phyric rhyolites (HSR , see below) that have co-
herent textures (sills or lavas?). 

In Figure 10a, Zr/Ti ratios are used to 
highlight four rhyolite suites (R

a
highlight four rhyolite suites (R

a
highlight four rhyolite suites (R , R

b
, R

b
, R , R

c
, R

c
, R , R

d
, R

d
, R ) 

and two high-silica rhyolite suites (HSR
a

and two high-silica rhyolite suites (HSR
a

and two high-silica rhyolite suites (HSR  and 
HSR

b
HSR

b
HSR ) from the IVS sequence. In this plot, Zr 
and Ti values are normalized (divided by Yb) 
to remove the effects of mass/volume changes. 
Common Zr/Ti trajectories for rhyolites may 
arise due to variable temperatures of fusion of 

Fig. 10. Immobile-element diagrams for felsic volcanic 
rocks from the IVS. a) Yb-normalized Zr/Ti plot high-
lights Zr-Ti arrays subdivided into Ra, b, c, d rhyolite types 
and HSRa and HSRb high-silica rhyolites (plot after Lentz, 
1998). b) Zr/Ti-Y/Ti plot indicating the magmatic affi nity 
of IVS rhyolites, high-silica rhyolites and tonalitic gneiss-
es (QPG) (from Lentz, 1998, 1999). c) Nb-Y discrimi-
nate diagram of Pearce et al. (1984). See Fig. 5 for key 
to rock-type abbreviations.

a similar source (Lentz, 1999), whereas the ob-
served range of Zr/Ti ratios may refl ect mix-
ing processes (magmatic or sedimentary?). The 
recognition of four (R

a
recognition of four (R

a
recognition of four (R  to R

d
 to R

d
 to R ) rhyolite types is 

supported by the following observations: 1) R
a

supported by the following observations: 1) R
a

supported by the following observations: 1) R
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rhyolites are spatially restricted to the altered 
footwall sequence; 2) R

b
footwall sequence; 2) R

b
footwall sequence; 2) R  rhyolites are typical 
of, but not restricted to, the altered footwall – 
altered corridor and are commonly composed 
of metamorphosed chlorite ± sericite alteration 
assemblages; and 3) R

c
assemblages; and 3) R

c
assemblages; and 3) R  rhyolites occur main-
ly within the regional stratigraphic hanging 
wall sequence and are commonly enriched in 
K, depleted in Na and variably silicifi ed (Rob-
erts, 2002). However, these suites have similar 
and overlapping bulk compositions and there-
fore R

a
 through to R

d
 through to R

d
 through to R  (Zr/Ti =~0.02-0.12) rhy-

olites are treated as a geochemically similar en-
tity (IVS rhyolites). 

IVS rhyolites have average Zr/Nb ratios (avg. 
Zr/Nb = 21.4) identical to IVS basalts. Immo-
bile-element ratios (e.g. Zr/Y; Fig. 10b) indicate 
that rhyolites are tholeiitic to transitional calc-
alkaline in character (Zr/Y = 3.0-7.6; La/Ybn
= 1.9-5.5; Th/Yb = 0.37-1.10; discriminating 
ranges from Barrett & MacLean, 1999). These 

Fig. 11. Primitive mantle-normalized trace-element plots for a) least-altered IVS rhyolites (Ra–d), b) least-altered high-
silica rhyolites HSRa, c) least-altered high-silica rhyolites HSRb and d) least altered quartz-plagioclase gneisses (QPG). 
Primitive mantle values from Sun and McDonough (1989).

rocks have I-type, island arc affi nities (Fig. 10c), 
relatively low to moderate Ti/Sc ratios (147-
378; crustal Ti/Sc values = 250-450; Wedepohl, 
1995) and mantle-like Nb/Ta ratios (avg. Nb/
Ta = 16.2; mantle Nb/Ta values = 17.5, Taylor 
& McLennan, 1985). 

Primitive mantle-normalized incompatible-
element profi les for IVS rhyolites (Fig. 11a) in-
dicate that these rocks are moderately enriched 
in LILE over HFSE, weakly enriched in LREE 
relative to HREE, contain moderate HFSE 
abundances, fl at HREE profi les, weak negative 
Nb (avg. Th/Nbn = 3.0) and Eu (avg. Eu/Eu* = 
0.68) anomalies and moderate negative Ti (avg. 
Ti/Ti*= 0.08), Sc and V anomalies. For samples 
with higher Zr/Ti ratios (lower Ti), the topol-
ogy of normalized profi les remains similar al-
though negative Ti, Sc and V anomalies become 
more pronounced and may indicate the onset of 
magnetite fractionation. Several rhyolite sam-
ples, particular those in the R

c
ples, particular those in the R

c
ples, particular those in the R  suite, have anom-
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alously low V abundances, which may be in re-
sponse to this process.

Least-altered rhyolites have rhyodacitic (R
a

Least-altered rhyolites have rhyodacitic (R
a

Least-altered rhyolites have rhyodacitic (R ) 
to rhyolitic silica contents (R

b
to rhyolitic silica contents (R

b
to rhyolitic silica contents (R , R

c
, R

c
, R , R

d
, R

d
, R ), Al

2
O

3

~12-13 wt.%, K
2

~12-13 wt.%, K
2

~12-13 wt.%, K O < 1.5 wt.% and FeO/MgO 
~2-4. Least-altered rhyolites are relatively sodic 
(Na

2
O/K

2
O/K

2
O/K O ratios ~2.5-3.5), although these ra-

tios are quite variable due to background albitic 
and sericitic alteration.

4.2.5. IVS High-silica rhyolites (HSR)

By defi nition, high-silica rhyolites in the sam-
ple suite have relatively high silica contents 
(~75–78 wt.% SiO

2
, although some high val-

ues may be a result of pre-metamorphic silicifi -
cation), and are distinctive due to relatively low 
TiO

2 
(0.11-0.19), high HFSE contents (e.g. Zr 

135–201 ppm) and hence higher incompatible 
to compatible element ratios (e.g. Zr/Ti 0.14–
0.30) compared to IVS rhyolites. Two high-sil-
ica rhyolite suites are distinguished (HSR

a
ica rhyolite suites are distinguished (HSR

a
ica rhyolite suites are distinguished (HSR  and 
HSR

b
HSR

b
HSR ). Similar to IVS rhyolites, high-silica rhy-
olites “HSR

a
” have Zr/Nb ~23 and tholeiitic to 

transitional Zr/Y (3.9–4.8), La/Ybn (2.5–3.7) 
and Th/Yb (0.7–1.0) ratios. HSR

a
and Th/Yb (0.7–1.0) ratios. HSR

a
and Th/Yb (0.7–1.0) ratios. HSR  have similar 
Nb/Ta values (avg. = 15.4) as IVS rhyolites al-
though Ti/Sc ratios are distinctly lower (102–
207). Primitive mantle normalized incompati-
ble-element plots for HSR

a
ble-element plots for HSR

a
ble-element plots for HSR  samples (Fig. 11b) 

a
 samples (Fig. 11b) 

a

are similar in profi le to IVS rhyolites at slight-
ly higher absolute HFSE and REE contents, 
whereas negative Nb (avg. Nb/Thn = 4.0), Eu 
(avg. Eu/Eu* = 0.49), Ti (avg. Ti/Ti* = 0.01), Sc 
and V anomalies are greater. 

A second distinct high-silica, low TiO
2
 (Zr/

Ti = 0.14–0.20) rhyolite “HSR
b

Ti = 0.14–0.20) rhyolite “HSR
b

Ti = 0.14–0.20) rhyolite “HSR ” is distin-
guished from HSR

a
guished from HSR

a
guished from HSR  by its lower Zr contents 

a
 by its lower Zr contents 

a

(87–129 ppm), and hence lower Zr/Nb (~14) 
and Zr/Th (~24) ratios. Similar to HSR

a
and Zr/Th (~24) ratios. Similar to HSR

a
and Zr/Th (~24) ratios. Similar to HSR , these 
rocks have a similar range of tholeiitic to tran-
sitional La/Ybn (1.6–5.8) and Th/Yb (1.1–1.7) 
ratios. HSR

b
ratios. HSR

b
ratios. HSR  rhyolites have Ti/Sc ratios (247–
415) similar to IVS rhyolites, yet have distinct-
ly lower crustal-like Nb/Ta ratios (avg. Nb/Ta = 
11.7). Primitive mantle normalized incompati-

ble-element profi les for HSR
b

ble-element profi les for HSR
b

ble-element profi les for HSR  are similar in pro-
fi le to those of HSR

a
 (and hence IVS rhyolites), 

a
 (and hence IVS rhyolites), 

a

although relative Zr contents are lower and neg-
ative Nb (avg. Nb/Thn = 5.0), Eu (avg. Eu/Eu* 
= 0.34), Ti (avg. Ti/Ti* = 0.01), Sc and V anom-
alies are on average greater than IVS rhyolites 
and HSR

a
 (Fig. 11c).

a
 (Fig. 11c).

a

4.2.6. IVS Quartz-plagioclase gneiss (QPG)

QPG samples have similar immobile ele-
ment systematics and least-altered major ele-
ment abundances to IVS rhyolites with sever-
al evolved samples similar to HSR

a
al evolved samples similar to HSR

a
al evolved samples similar to HSR . For exam-
ple, in comparison to IVS rhyolites, the QPG 
suite has similar Zr/Nb (avg. Zr/Nb = 20.3) ra-
tios and overlapping Zr/Ti (0.03–0.11), Zr/Y 
(1.9–12.9), La/Ybn (3.1–5.0) and Th/Yb (0.7–
1.1) ratios (Table 2). Figure 10c shows that these 
rocks have I-type affi nities and plot within the 
volcanic arc granite fi eld of Pearce et al. (1984). 
Primitive mantle-normalized incompatible-ele-
ment plots are similar in profi le to IVS rhyo-
lites (avg. Th/Nbn = 3.0; avg. Eu/Eu* = 0.62; 
avg. Ti/Ti* = 0.07) (Fig. 11d). This suite also 
has mantle-like Nb/Ta ratios (avg. = 16.4) and 
moderate Ti/Sc ratios (234–308). Least-altered 
QPG have whole-rock δ18O values of ~8.0 ‰ 
(Roberts, 2002), further suggesting a mantle-
dominated signature.

Quartz-plagioclase gneisses range in com-
position from tonalitic to trondhjemitic. Simi-
lar tonalites-trondhjemite gneisses have been re-
ported from elsewhere in the district (Lahtinen, 
1994), of which the Kangasjärvi QPG broadly 
resembles the Rastinpää high-Y suite of Lahtin-
en (1994). Lahtinen (1994) has shown that the 
composition of the Rastinpää high-Y tonalite 
varies in part due to fractional crystallization 
of plagioclase, a ferromagnesian phase (pyrox-
ene) and magnetite. In Figure 12, Harker di-
agrams indicate a similar fractionating assem-
blage for the variety of QPG compositions at 
Kangasjärvi. FeO, MgO, TiO

2
, V (Fig. 12a–d) 

and Sc (not shown) decrease with increasing de-
gree of fractionation and indicate the involve-
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Fig. 12. Major- and trace-element Harker-type diagrams for quartz-plagioclase gneisses (QPG). Arrows indicate ig-
neous fractionation trends (FC) and pre-metamorphic alteration trends (Alt.).

ment of a ferromagnesian phase and a Ti-bear-
ing phase (titanite, rutile, magnetite, ilmenite) 
during fractionation. Over the fractionation 
interval, the V content (36–4 ppm) decreases 
sharply compared to Sc (14–8 ppm). Due to 
the high partition coeffi cient of V relative to Sc 

for magnetite, these trends indicate the impor-
tance of magnetite fractionation over pyroxene 
(see Lahtinen, 1994). CaO and Sr, as well as Ba 
(not shown) also decrease systematically and in-
dicate fractionation of plagioclase (Fig. 12e–f ). 
K

2
K

2
K O does not show any trend with increasing 
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fractionation (Fig. 12g) and indicates that bi-
otite was not a signifi cant fractionating phase. 
Note that several samples describe trends of FeO 
+ MgO gain and CaO + Sr loss, which may in-
dicate a slight degree of pre-metamorphic alter-
ation (Fig. 12a–b and e–f, respectively). 

With increasing degree of fractionation Y 
contents remain the same or increase slightly 
(Fig. 12h), indicating that hornblende fraction-
ation was negligible. As magnetite and horn-
blende fractionation are characteristic of hy-
drous, lower-temperature, oxidized, calc-alka-
line magmas (Lentz, 1998), the contrasting be-
haviour of V and Y in the QPG suite is indica-
tive of a dry, moderate- to high-temperature and 
moderate fOfOf

2
 magma conditions transitional 

between tholeiitic and calc-alkaline systems.

5. Chemostratigraphy

In order to constrain relative stratigraphy in the 
local vicinity of the ore deposit, immobile-el-
ement ratios (Zr/Ti) are plotted on a chem-
ostratigraphic profi le through the ore horizon 
(Fig. 13). Sections through the host sequence 
are subdivided into three sub-sections (A, B, 
and C). Section A contains a complex associ-
ation of variably altered basalts, rhyolites and 
footwall andesites that occur along the northeast 
margin of the relatively massive and more com-
petent QPG. This package is strongly sheared 
and, from drill core, the nature of the QPG – 
country rock contact is equivocal. Weak miner-
alization and the sporadic occurrence of altered 
rocks in A suggest that this section is a structur-
al repetition of section B. The stratigraphic base 
of section B (i.e. furthest from ore) commenc-
es with a mixed package of mafi c volcanic rocks 
(basalts – basaltic andesites), footwall andesites 
and variable mafi c to intermediate volcaniclastic 
rocks. Unaltered varieties of these rocks are in-
terlayered with mafi c to intermediate orthoam-
phibole + cordierite rocks with pyrite ± pyr-
rhotite ± chalcopyrite disseminations, the later 
rocks becoming more prevalent towards the de-
posit. A variably to intensely altered package of 

felsic volcanic rocks (quartz + plagioclase + bi-
otite + sillimanite + cordierite ± garnet assem-
blages) succeed these rocks and are the host to 
ore. The base of this package commences with 
a ~5-10 m interval of variably altered high-silica 
rhyolite and is typically succeeded by R

a
rhyolite and is typically succeeded by R

a
rhyolite and is typically succeeded by R  and R

b
 and R

b
 and R

rhyolites that host ore. Due to irregular dissem-
inations of sulphides and competency contrasts 
between massive sulphides and host rocks, rocks 
in the vicinity of ore are commonly sheared and 
variably altered to retrograde biotite + musco-
vite assemblages. Intervals of mafi c orthoam-
phibole-cordierite rocks occur within the fel-
sic package, although these are interpreted to be 
fold repetitions of the same rocks lower in sec-
tion B. Rock types and metamorphosed alter-
ation assemblages described above occur sym-
metrically on either side of the massive sulphide 
layers (section C), and hence form the basis for 
the interpretation that the ore horizon sits with-
in the hinge region of an F

3
 antiform. 

6. Orthoamphibole-cordierite rocks: 
origin and signifi cance

From the above description of relative stratigra-
phy in the vicinity of massive sulphides, it is ap-
parent that the origin and signifi cance of ma-
fi c to intermediate orthoamphibole-cordier-
ite rocks may help to constrain true stratigra-
phy in the context of “footwall” versus “hang-
ing wall” alteration typically associated with 
VMS deposits (see review by Large et al., 2001). 
For the purpose of this discussion, orthoam-
phibole-cordierite rocks refers to altered rocks 
comprised of metamorphic assemblages that in-
clude orthoamphibole + cordierite ± plagiocla-
se ± cummingtonite ± garnet ± biotite. Immo-
bile and incompatible-element binary plots (e.g. 
Zr versus Nb; Fig 14a) for samples of least-al-
tered IVS basalts, footwall andesites, volcani-
clastic rocks and orthoamphibole-cordierite 
rocks describe a tight co-linear array. Samples 
trend along the linear array as a function of ig-
neous fractionation and mass/volume changes 
incurred during alteration and metamorphism. 
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Fig. 13. Chemostratigraphic pro-Fig. 13. Chemostratigraphic pro-
fi le of the altered footwall se-fi le of the altered footwall se-
quence to the Kangasjärvi Zn-Cu quence to the Kangasjärvi Zn-Cu 
deposit. Rock-type abbreviations deposit. Rock-type abbreviations 
as in Fig. 5.as in Fig. 5.

Note that orthoamphibole-cordierite rocks clus-
ter amongst basalts and andesites with some 
scatter for orthoamphibole-cordierite rocks as-
sociated with volcaniclastic signatures. Immo-
bile incompatible-compatible element bina-
ry plots (Fig 14b–c) shows that orthoamphib-
ole – cordierite rocks, especially those associat-
ed with IVS basalts, mimic the igneous fraction-
ation pattern of the least-altered rocks. There-
fore orthoamphibole-cordierite rocks appear to 
be the altered and subsequently metamorphosed 
equivalent of basalts, basaltic andesites and ma-
fi c volcaniclastic rocks.

In general, orthoamphibole-cordierite rocks 
are enriched in FeO + MgO (Fig. 14d) ± K

2
are enriched in FeO + MgO (Fig. 14d) ± K

2
are enriched in FeO + MgO (Fig. 14d) ± K O 
and depleted in CaO (Fig. 14e), SiO

2
 ± Na

2
O. 

Gains in FeO + MgO are associated with the ad-
dition of sulphides and the stability of metamor-
phic phases such as gedrite, garnet and cordier-
ite. Gains in FeO +MgO ± K

2
ite. Gains in FeO +MgO ± K

2
ite. Gains in FeO +MgO ± K O and the loss of 
CaO are typical of chlorite ± sericite formation 
at the expense of primary igneous phases (e.g. 
Barrett & MacLean, 1994). Mafi c orthoamphi-
bole-cordierite rocks also have high Zn (up to 
~900 ppm; Fig. 14f ) and weak to moderate Cu 
(up to ~180 ppm). 

These data clearly indicate that orthoamphi-
bole-cordierite rocks are the metamorphosed 
equivalent of altered IVS basalts, footwall an-
desites and volcaniclastic rocks. Major element 
systematics show that orthoamphibole-cordier-
ite rocks describe relative mass gains and loss-
es similar to chlorite-altered rocks that are lo-
cated in the proximal footwall zone of modern 
and ancient VMS deposits (e.g. Galley & Ko-
ski, 1999). Similar conclusions have been drawn 
for orthoamphibole-cordierite rocks found else-
where (e.g. Treloar et al., 1981; Wolter & Seif-
ert, 1984; Trägårdh, 1991; Araujo et al., 1996). 
Consequently, the domain of mafi c orthoam-
phibole-cordierite rocks which precedes the ore-
hosting felsic volcanic sequence at Kangasjärvi 
is considered to be part of the stratigraphic foot-
wall and therefore likely represents a fossilized 
hydrothermal upfl ow zone related to minerali-
zation. This interpretation has two implications: 
1) deposition of footwall andesites and the bulk 
of mafi c volcanism likely preceded mineraliza-
tion; and 2) the bulk of felsic volcanism, as im-
plied by the immediate host rocks to massive 
sulphides and the widespread K-metasomatism 
in the inferred “regional hanging wall”, is like-
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Fig. 14. Immobile (a–c) and mobile (d–f) major- and trace-element variation diagrams for least-altered rocks and or-
thoamphibole-cordierite rocks (Oam-Crd) from the altered footwall of the deposit. 

ly to be broadly coeval with or post-dates min-
eralization.

7. Discussion
7.1. Petrogenesis and paleotectonic setting
7.1.1. Basalts and footwall andesites

Low Ni, Cr and HFSE abundances, coupled 
with low to moderate LILE contents and mod-
erate LREE-enrichment of the IVS and OVS 
basalts are features typical of island arc tholei-
ite basalts (Perfi t et al., 1980; Pearce & Peate, 
1995). Basalts with low HFSE and REE con-

tents, such as those from the IVS and OVS, have 
been reported from modern and ancient island 
arc settings (e.g. Ewart & Hawkesworth, 1987 
and Stern et al., 1995, respectively) and indicate 
a strongly depleted arc mantle source likely due 
to the extraction of MORB or back-arc basin 
basalts (Stern et al., 1995). The relatively low-
K and tholeiitic nature of the IVS basalts sug-
gests an oceanic island arc setting, rather than 
a rifted continental margin (Pearce, 1996). El-
evated LILE and LREE, however, preclude der-
ivation in a juvenile oceanic setting (e.g. intra-
oceanic rift, forearc). Rather, these features indi-
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cate that basalts were erupted in an intra-arc set-
ting underlain by thin juvenile crust. This con-
clusion is in accordance with Lahtinen (1994), 
who concluded that basaltic volcanism associat-
ed with VMS deposits in the Vihanti–Pyhäsal-
mi district occurred above a west-dipping sub-
duction zone during rifting of a ca. 1.94–2.0 Ga 
primitive oceanic island arc underlain by deplet-
ed mantle. Higher LILE and LREE abundances 
(higher Th/Nb and La/Nb ratios, respectively) 
for the OVS suite relative to the IVS suite may 
indicate a greater contribution of these compo-
nents from subduction-related processes (fl u-
ids or melts) or intracrustal contamination (see 
Stern et al., 1995). This suggests that OVS ba-
salts may have been generated or modifi ed in a 
thicker, mature arc relative to basalts in the IVS 
sequence. The chemistry of mafi c volcanic rocks 
from the OVS is similar to mature, ca. ~1.88 Ga 
mafi c island arc basalts of the Western Volcan-
ic Sequence in the Pyhäjärvi area (Kousa et al., 
1994), and therefore OVS basalts are tentatively 
correlated with this younger suite. 

The relatively uniform composition of foot-
wall andesites and the observation of andesitic 
clasts within IVS mafi c volcaniclastic rocks is in-
terpreted to indicate that footwall andesites are 
not the fractionated equivalent of IVS basalts, 
but were likely erupted in a similar tectonic set-
ting (similar mantle signature) and formed the 
substrate onto which IVS basalts were extrud-
ed. The transition from andesites to basalts like-
ly indicates a transition from a compressional or 
neutral arc-building stage (>1.93 Ga; Lahtin-
en, 1994) to extensional rifting of the arc and 
the rapid extrusion of a bimodal volcanic suite 
(1.93 – 1.91 Ga; Kousa et al., 1994; Lahtinen, 
1994).

7.1.2. IVS rhyolites, high-silica rhyolites and gneissic to-
nalites 

The relatively fl at REE profi les and low Zr/Y, 
La/Ybn ratios of IVS rhyolites generally indicate 
the lack of extensive hornblende fractionation, 
typical of tholeiitic to transitional-calc-alkaline 

sequences in extensional settings (see review by 
Lentz, 1998). High-silica rhyolites at Kangas-
järvi have similar incompatible-element ratios 
to IVS rhyolites and gneissic tonalites and are 
therefore broadly cogenetic. Relative to IVS rhy-
olites, high-silica rhyolites at Kangasjärvi largely 
fi t the defi nition of Barrie et al. (1993) for high-
silica rhyolites (>73 wt.% SiO

2
, high HFSE and 

REE contents, fl at REE profi les, negative Eu 
anomalies). High silica contents indicate either 
fairly low degrees of partial melting or a high de-
gree of fractional crystallization. Similarly, high-
er HFSE and REE contents indicate low de-
grees of partial melting and high temperatures 
of crustal fusion and emplacement (rapid ascent 
to the near surface). Pronounced Eu anomalies 
can result from either partial melting with a pla-
gioclase residuum, subsequent feldspar fraction-
ation or a combination of both processes (Lentz, 
1998). 

The Kangasjärvi gneissic tonalite is geochem-
ically indistinguishable from the IVS rhyolites 
and hence it is considered to be a cogenetic sub-
volcanic intrusion. Both suites have incompati-
ble-element ratios (e.g. Zr/Nb) that are identi-
cal to the IVS basalts and moderate LILE and 
LREE enrichment indicating derivation from a 
similar source region and a similar subduction 
component, respectively. Trace-element mod-
elling by Lahtinen (1994) indicates that the 
Rastinpää gneissic tonalite may have been de-
rived by small degrees of partial melting (10-
15%) of basaltic, low-K island arc tholeiites at 
the base of the primitive island-arc crust. Due 
to the similar inferred geologic setting and ge-
ochemical composition as the Rastinpää gneis-
sic tonalite, the model of Lahtinen (1994) is 
also considered viable for the Kangasjärvi area. 
This model is also supported by a high ε

Nd 
val-

ue (~3.2 ± 0.4) for one sample of QPG in the 
Kangasjärvi area and similar values (~3.0) for ca. 
1.92 Ga rhyolites and tonalite gneisses associat-
ed with VMS deposits elsewhere in the district 
(Lahtinen and Huhma, 1997). These Nd iso-
tope data and recent ion probe U-Pb measure-
ments of zircons from felsic rocks of the 1.92 Ga 
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suite (Vaasjoki et al., 2003) confi rm a primitive, 
mantle-derived source for felsic magmas associ-
ated with bimodal volcanic suites in the Vihan-
ti–Pyhäsalmi district.

7.1.3. High-Ti andesites and dacites

Whether high-Ti andesites and dacites have a 
sedimentary or igneous origin is presently un-
resolved due to a lack of outcrop-scale observa-
tions (e.g. textures, contact relationships). Al-
though high-Ti andesites and dacites have Zr/
Ti ratios intermediate between mafi c and felsic 
volcanic rocks, they are unlikely to be mechani-
cal mixtures of these two end-members. For ex-
ample, pure mechanical mixing of basalts or an-
desites with rhyolites would require these mix-
tures to have undergone a minimum mass or 
volume loss of ~30 % in order to residually en-
rich the immobile elements Ti and Zr. A residu-
al enrichment of this magnitude is not observed 
for other immobile elements (e.g. Al) or ele-
ments that would partition into heavy miner-
al fractions during sedimentation (e.g. Sc, V, P). 
The evolved nature of these rocks (higher FeO, 
TiO

2
 and lower MgO, CaO and Al

2
O

3
 relative 

to IVS/OVS basalts) is similar to some Icelan-
dic lavas (Icelandites; Wood, 1978), differenti-
ated mid-oceanic ridge basalts (FeTi basalts, an-
desites and rhyolites; Juster et al., 1989) and dif-
ferentiated rocks of the Skaergaard intrusion 
(Brooks & Nielson, 1978). In general, these 
evolved suites are thought to be the result of 
extensive fractionation of tholeiitic magmas at 
shallow levels in the crust under relatively oxi-
dizing conditions (Juster et al, 1989).

Similar differentiated tholeiitic volcanic 
rocks overlie ancient VMS deposits in Canada 
(Bear Lake section, Flin Flon Belt: Syme et al., 
1999; Kamiskotia camp, Abitibi Subprovince: 
Barrie et al., 1991). Given that the relatively ox-
idized conditions (Ni-NiO buffer) required to 
produce the observed fractionation trends ne-
cessitate open-system conditions (Juster et al., 
1989), Barrie et al. (1991) suggested, in relation 
to evolved basalt-andesite-rhyolite suites at Ka-

miskotia, that potentially oxidizing hydrother-
mal fl uids, contemporaneous with Cu-Zn dep-
osition, may have infl uenced the redox state 
of shallow-level magma chambers. The simi-
lar stratigraphic relationship of high-Ti rocks at 
Kangasjärvi to those associated with VMS de-
posits elsewhere (i.e. within the upper levels of a 
seafl oor hydrothermal system) may support the 
interpretation that high-Ti andesites and dacites 
are indeed the differentiated equivalent of un-
derlying basalts. Without further geologic ob-
servations of high-Ti andesites and dacites at 
Kangasjärvi (i.e. textures, contact relationships), 
however, their origin remains equivocal. The oc-
currence of ferrobasalts in association with oth-
er VMS deposits in the Vihanti–Pyhäsalmi dis-
trict (Ruostesuo; Roberts et al., 2003) and other 
world-class VMS districts (see above), suggests 
that the petrogenesis of these rocks warrants fu-
ture research.

7.2. Depositional setting and stratigraphy
7.2.1. Inner volcanic sequence

A compilation of lithologies, textures, contact 
relationships and some aspects of pre-metamor-
phic alteration are shown in Figure 15 to illus-
trate the stratigraphy and geologic framework of 
the Kangasjärvi area. It is proposed that IVS ba-
salts were extruded onto an andesitic substrate 
and that the bulk of felsic volcanism, in asso-
ciation with Zn-Cu mineralization, post-dated 
this event. The observation of QPG, the subvol-
canic equivalent of ore-associated felsic volcan-
ic rocks, in intrusive contact with footwall an-
desites further supports the above stratigraphic 
scheme. It is acknowledged, however, that these 
fi ndings are based on relatively few and highly 
deformed outcrops and that a variety of intru-
sive relationships may be possible. In the Mul-
likkoräme region, for example, a felsic intrusion 
with textures indicative of a high level of em-
placement (e.g. relict miarolitic cavities) is the 
local footwall to highly epidotized basalts (A. 
Galley, pers. comm., 2002). As epidosites are 
indicative of high-temperature reactions zones 
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at the base of seafl oor hydrothermal systems 
(Schiffman and Smith, 1988), the above-noted 
relationship at Mullikkoräme strongly suggests 
that shallow-level felsic intrusions provided the 
necessary heat to drive convective hydrothermal 
circulation. The lack of epidosites at Kangas-
järvi, and the narrow distance between the QPG 
and the ore deposit (~200–250 m), may indi-
cate that portions of the QPG represent a resur-
gent phase of felsic magmatism that post-dat-

ed mineralization (similar to the multi-compo-
nent Sneath Lake intrusive complex, Snow Lake 
arc assemblage, Flin Flon Belt, Canada; Bailes & 
Galley, 1999) and possibly assimilated previous-
ly altered rocks (e.g. epidosites). 

7.2.2. Outer volcanic sequence

The outer volcanic sequence is a complex asso-
ciation of mafi c volcanic rocks, undifferentiat-

Fig. 15. Compilation diagram of rock types, outcrop textures and alteration features for rocks in the Kangasjärvi 
area. Rock-type abbreviations as in Fig. 5. Solid lines between lithologies indicate contact relationships observed in 
outcrop or drill core that are considered primary. Dashed lines with question marks indicate inferred contact re-
lationships. Qtz = quartz; Pl = plagioclase; Bt = biotite; Oam = orthoamphibole; Sil = sillimanite; Grt = garnet; Crd 
= cordierite; Epi = epidote; Py = pyrite.
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ed sedimentary rocks, locally occurring calc-sili-
cates (metalimestones), metagreywackes and U-
P-bearing graphitic schists. The relative stratig-
raphy and sedimentary provenance of this se-
quence is presently unresolved. In contrast to 
rifting and active volcanism described by rocks in 
the IVS, the occurrence of abundant sedimenta-
ry rocks in the OVS indicates that this sequence 
is characterized, at least in part, by a basin-style 
sedimentary setting. As noted previously, mafi c 
volcanic rocks in the OVS broadly resemble the 
ca. 1.88 Ga mature island arc volcanic rocks and 
therefore the OVS sequence as a whole is consid-
ered to be younger than the IVS.

7.3. Metallogenic implications

We have shown that pre-metamorphic, sea-
fl oor hydrothermal alteration associated with 
VMS-style mineralization at Kangasjärvi oc-
curred within a bimodal suite of volcanic rocks 
that comprise the stratigraphic hanging wall to 
the Kangasjärvi gneissic tonalite. This bimodal 
sequence was the result of intra-arc rifting of a 
fairly thin and juvenile oceanic island-arc (see 
also Lahtinen, 1994). Distinctive high-silica 
rhyolites were emplaced within the immediate 
footwall to massive sulphides prior to or during 
intense hydrothermal alteration associated with 
mineralization.

Bimodal volcanic sequences with cogenetic 
high-level tonalite-trondhjemite intrusions are 
typical of primitive submarine extensional set-
tings such as oceanic spreading centres, ocean-
ic proto-arcs, rifted-arcs and back-arcs (Galley, 
2003). The generation of isotopically juvenile 
felsic magmas at Kangasjärvi, their rapid em-
placement as high-level intrusions in extension-
al settings and their common association with 
high-temperature high-silica rhyolites is indic-
ative of signifi cant heat transfer from the upper 
mantle – lower crust to the upper crust (Bailes 
& Galley, 1999; Galley, 2003). While high-lev-
el intrusions have been postulated as the “heat-
engine” that drives long-lived convective hydro-
thermal systems (e.g. Campbell et al., 1981; 

Cathles, 1983), Bailes & Galley (1999) noted 
that the intrinsic thermal properties required to 
generate well-endowed VMS districts may re-
fl ect an anomalous thermal corridor related to 
the broader geodynamic context (i.e. arc rifting) 
rather than individual high-level intrusions. In 
that regard, tonalite-trondhjemite intrusions 
and high-silica rhyolites at Kangasjärvi may be 
the near-surface expression of the high overall 
heat fl ux to the upper crust due to rifting of a 
juvenile arc, which subsequently led to long-
lived convective hydrothermal circulation and 
mineralization. High-silica rhyolites also occur 
in association with sulphide mineralization else-
where in the district (Pyhäsalmi: Mäki, 1986; K. 
Rasilainen, pers.comm., 2002; Ruostesuo: Rob-
erts et al., 2003). Therefore, by virtue of associa-
tion with the altered footwall of the Kangasjärvi 
deposit (and a spatial association with other de-
posits) and by their intrinsic petrogenetic prop-
erties, delineation of high-silica rhyolites in the 
Vihanti–Pyhäsalmi district may be a powerful 
exploration tool for identifying favourable vol-
canic sequences. 

8. Conclusions

Although many geologic relationships in the 
Kangasjärvi area are obscured by deformation 
and metamorphism, many attributes of stratig-
raphy and alteration can be resolved by a com-
bination of map-scale patterns, outcrop obser-
vations and whole-rock geochemistry. Several 
of these observations appear to be fundamen-
tal to the localization of mineralization at Kan-
gasjärvi, and possibly other deposits in the dis-
trict, and are therefore applicable to district-
scale exploration strategies. These relationships 
are summarized below:

1) The bulk of basaltic volcanism occurred in a 
subaqueous setting on an arc-related andesit-
ic substrate. 

2) Large (multi-phase?) trondhjemite-tonalite 
intrusions were emplaced as stocks or sills 
within the andesitic basement and represent 
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the subvolcanic equivalent of ore-associated 
felsic volcanic rocks.

3) Sulphide mineralization occurred on or with-
in a felsic volcanic – volcaniclastic package 
and was associated with moderate to intense 
chlorite + sericite alteration.

4) Orthoamphibole-cordierite rocks in the al-
tered footwall of the deposit occur strati-
graphically below the ore-hosting rhyo-
lites and are the altered equivalent of mafi c 
and intermediate volcanic and volcaniclastic 
rocks. The origin of these rocks is attributed 
to pre-metamorphic chlorite ± sericite alter-
ation typical of hydrothermal upfl ow zones 
that underlie many ancient seafl oor massive 
sulphide deposits.

5) High-silica rhyolites (HSR
a

High-silica rhyolites (HSR
a

High-silica rhyolites (HSR ) are spatially as-
sociated with the immediate stratigraph-
ic footwall of the deposit and were variably 
chloritized during the mineralizing process. 

6) The occurrence of quartz-plagioclase gneisses 
and high-silica rhyolites represent the near-
surface expression of an anomalous thermal 
corridor that was likely conducive to long-
lived, convective hydrothermal circulation of 
modifi ed seawater and the precipitation of 
base metal mineralization. 
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