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Abstract

Sm-Nd data were determined for eight mafic-uttramafic intrusions from the Svecofennian
(1.88 Ga) Kotalahti Nickel Belt, Finland. The intrusions represent both mineralized and bar-
ren types and are located at varying distances from the Archaean/Proterozoic boundary.
The samples for the 23 Sm-Nd isotope analyses were taken mostly from the ultramafic dif-
ferentiates. Results show a range in initial €, values at 1880 Ma from -2.4 to +2.0. No rela-
tionship can be found between the degree of Ni mineralization and initial €, values, while
a correlation with the geological domain and country rocks is evident. The Majasaari and
Toérmald intrusions, which have positive g, values, were emplaced within the Svecofen-
nian domain in proximity to .92 Ga tonalitic gneisses, which have previously yielded ini-
tial €, values of ca. +3.In contrast, the Luusniemi intrusion, which has an €, value of -2.4
is situated close to exposed Archaean crust. Excluding two analyses from the Rytky intru-
sion, all data from the Koirus N, Koirus S, Kotalahti, Rytky and Kylmalahti intrusions, with-
in error limits, fall in the range -0.7 £ 0.3.The results support the concept of contamina-
tion by Archaean material in proximity to the currently exposed craton margin. The com-
position of the proposed parental magma for the intrusions is close to EMORB, with ini-

tial €, values near +4,
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I Introduction Gail, 1972; Hikli et al., 1979; Mikinen & Makko-

Most of the nickel-bearing Svecofennian (1.88 Ga)
mafic-ultramafic intrusions in Finland are situated
around the margins of the Central Finland Grani-
toid Complex, in the Kotalahti and Vammala Nickel
Belts. The Kotalahti Nickel Belt also lies close to the
Archaean/Proterozoic boundary (Fig. 1, Hikli, 1971;

nen, 2004; Peltonen, 2005). The magmatism that
produced the ore-bearing intrusions was broadly co-
eval with the Svecofennian orogeny and the emplace-
ment of the magma took place during the maximum
intensity of deformation and metamorphism (Mik-

inen & Makkonen, 2004; Makkonen, 2005; Pelto-
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nen, 2005). It has been suggested that the composi-
tion of the parental magma was basaltic with a MgO
content of about 12 wt.% (Peltonen, 1995a, 2005;
Makkonen, 1996). Emplacement of magma was ac-
companied the gently dipping D, folding and thrust-
ing event (Mikinen & Makkonen, 2004; Makko-
nen, 2005), which was a response to convergence and
thrusting of Svecofennian terranes over the Archae-
an cratonic foreland (Koistinen, 1981). During D,
the subhorizontal D, , structures were reoriented into
steeper orientations (Mikinen & Makkonen, 2004).

The mafic-ultramafic intrusions are common-
ly enclosed within regionally metamorphosed and
migmatized Svecofennian turbiditic metasediments,
which show various degrees of assimilation by the
mafic magma. It has been proposed that this proc-
ess of assimilation resulted in the formation of ge-
ochemically and mineralogically distinctive types of
melt and mineral parageneses. According to Makko-
nen (1996) clinopyroxene-rich peridotites in the Juva
area crystallized from uncontaminated magma (Vam-
mala type, Mikinen, 1987), while orthopyroxene-
rich peridotites with intercumulus plagioclase (Kota-
lahti type, Mikinen, 1987) reflect increased SiO, and
AL O, in the magma, due to contamination by pelit-
ic country rock. Similar conclusions were drawn by
Makkonen et al. (2007) in a geochemical study of 11
intrusions in the Kotalahti Nickel Belt.

Sm-Nd isotopic studies indicate that felsic igneous
rocks in the Svecofennian domain in Finland tend
to have initial €, values from + 3 to -1 while corre-
sponding values for mafic rocks, including mafic-ul-
tramafic intrusions, range from + 3 to 0 (Huhma,
1986; Patchett & Kouvo, 1986; Makkonen, 1996).
Rocks with distinctly positive initial values, including
some of the mafic and ultramafic volcanics and the
bulk of the 1.92 Ga crust within the Kotalahti Nick-
el Bele (Lahtinen & Huhma, 1997), suggest deriva-
tion from depleted mantle sources, without signifi-
cant contributions from older LREE -enriched lithos-
pheric material. In contrast, initial €, values close to
zero obtained on some mafic-ultramafic rocks sug-
gest heterogeneity in mantle sources or assimilation

of crustal material.

For this study, samples were collected from eight
intrusions within the Kotalahti Nickel Belt, repre-
senting both mineralized and barren intrusions, lo-
cated at various distances from the Archaean/Prot-
erozoic boundary (Fig. 1) and surrounded by differ-
ent types of country rock. The purpose of the study is
to compare the Sm-Nd isotope composition of min-
eralized and barren intrusions and discuss the role of

crustal contamination.

2.Analytical methods

The chemical analyses were performed at the Geolog-
ical Survey of Finland (GTK) Espoo laboratories. For
whole rock analysis each sample was crushed in a Mn
steel jaw crusher and pulverized in a tungsten carbide
bowl before analysis by XRF (pressed powder pellets).
Samples were also analysed for REE and other trace
elements (HF-HCIO, digestion, lithium metaborate
- sodium perborate fusion; ICP-MS determination,
Rautiainen et al., 1996).

For Sm-Nd studies samples were selected on the
basis of the whole-rock and REE compositional data
and the same powders were used for both chemical
and isotopic analyses. The samples (150 — 200 mg)
were dissolved in HF-HNO, using Savillex screw cap
teflon beakers for 48 h. Mixed '“Sm-"""Nd spike was
added to the sample prior the dissolution. After care-
ful evaporation of fluorides, the residue was dissolved
in 6N HCI and a clear solution was achieved. Sm
and Nd were separated in two stages using a conven-
tional cation exchange procedure (7 ml of AG50Wx8
ion exchange resin in a bed of 12 c¢m length) and a
modified version of the Teflon-HDEHP (hydrogen
diethylhexyl phosphate) method developed by Rich-
ard et al. (1976). The measurements were made in
a dynamic mode on a VG SECTOR 54 mass spec-
trometer using Ta-Re triple filaments. "*Nd/"*Nd ra-
tio is normalized to “*Nd/"*Nd = 0.7219. The aver-
age value for the La Jolla standard was '*Nd/"Nd =
0.511850 + 12 (10, n = 32). The Sm/Nd ratio of the
spike has been calibrated against the Caltech mixed
Sm/Nd standard (Wasserburg et al., 1981). Based on

duplicated analyses, the error in ¥’Sm/'*Nd is esti-
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Fig. |. Location and lithologies in the Kotalahti Nickel Belt in Finland. Studied intrusions indicated by the numbers:
| = Majasaari, 2 = Térmaild, 3 = Kotalahti, 4 = Rytky, 5 = Koirus N, 6 = Koirus S, 7 = Luusniemi, 8 = Kylmadlahti.
Lithological maps simplified after Korsman et al. (1997). Hitura, Enonkoski and Parikkala Ni deposits and the Juva
area also shown.
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mated to be 0.4%. Initial "*Nd/"*Nd ratios and €,
values were calculated with the following parameters:
A%Sm = 6.54 x 102, WSm/"Nd = 0.1966 and
Nd/"Nd = 0.51264 for present CHUR. Depleted
mantle model ages (T-DM) were calculated accor-
ding to DePaolo (1981). Measurement on the rock
standard BCR-1 provided the following values: Sm
= 6.58 ppm, Nd = 28.8 ppm, '“Sm/"*Nd = 0.1380,
5Nd/*Nd = 0.51264 + 0.00002. The blank measu-
red during analyses was: 30 — 100 pg for Sm and 100
— 300 pg for Nd. The Isoplot-program by Ludwig
(2001) has been used for data handling.

3. Description of the intrusions

The intrusions are classified according to the amount
and composition of the sulfides found in each intru-
sion. The mineralized intrusions include Kotalahti,
Rytky and Térmaild and barren ones Majasaari, Luus-
niemi and Kylmilahti. Koirus N and Koirus S are

classified as intermediate types.

3.1. Majasaari

The Majasaari intrusion is located in the Viitasaari
area, within the Central Finland Granitoid Complex
(Fig. 1). Mafic-ultramafic rocks are generally rare in
this area (Pipping, 1972; Nironen & Front, 1992),
while remnants of upper Svecofennian supracrustal
rocks are found locally (Kousa & Lundqvist, 2000);
the Majasaari intrusion is surrounded by granitoids
and mica gneisses.

On the basis of magnetic survey measurements,
the Majasaari intrusion (Fig. 1, no 1) is apparently a
roundish body 1 km in diameter. The SE contact of
the intrusion is vertical, while on the opposite side
the contact is dipping at about 45 degrees towards
the W or NW. The central part of the intrusive body
is mainly composed of norite and locally also of gab-
bronorite and olivine gabbronorite. Near the SE mar-
gin, olivine gabbronorite grades into plagioclase-bear-
ing lherzolite. Plagioclase in the gabbroic rocks has a
distinct cumulus form, while in lherzolite it is an in-

tercumulus mineral. All rock types in the intrusion

are well preserved and the corona bands (orthopyrox-
ene-clinoamphibole-spinel) between plagioclase and
olivine are thin, possibly reflecting a relatively shal-
low crystallization level (thicker coronas are common
in Svecofennian intrusions associated with high-am-
phibolite or granulite facies rocks, cf. Tuisku & Mak-
konen, 1999). Sulfides (pyrrhotite, pentlandite, chal-
copyrite) occur only sporadically and metallic copper
is found in some samples (Makkonen et al., 2007).
Samples for the Sm-Nd study are from the olivine
gabbronorite and plagioclase-bearing lherzolite at the

SE margin of the intrusion.

3.2.Tormdld

The Térmild intrusion (Fig. 1, no 2) is located in the
high-grade Rautalampi area, which belongs into the
accretionary arc complex of central and western Fin-
land (Korsman et al., 1997). The area represents the
transition zone between the Central Finland Grani-
toid Complex and the Savo schist belt, some 40 km
west of the closest known exposures of the Archae-
an craton. The central part of the Térmili area is a
domal feature with gneissic tonalites (1.93 — 1.91
Ga) in the core, together with the mafic-ultramafic
rocks. The tonalites, which are the oldest rocks in the
area (Lahtinen, 1994; Pddjirvi, 2000), are structural-
ly overlain by mica gneisses.

The T6rmild gabbro-peridotite intrusion has a
surface area of about 50 x 150 m and the thickness
of the body is up to 40 m and dips gently to NW.
The contacts with the surrounding gneissic tonalites
are strongly tectonized. The main rock types are ol-
ivine gabbronorite and plagioclase-bearing lherzo-
lite, while coarse-grained gabbronorite and pyroxen-
ite is present at the margins of the intrusion. The cen-
tral part of the intrusive body is slightly more mafic
(higher whole-rock Mg-number and higher Fo) than
at the margins. Sulfides (pyrrhotite, pentlandite, chal-
copyrite) occur in varying amounts, either as coarse-
grained disseminations or breccias throughout the in-
trusion. The highest sulfide concentrations are found
near the footwall contact. Estimated mineral resourc-

es are 0.12 Mt at 0.6 wt.% Ni, 0.3 wt.% Cu and 6.0
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wt.% S (Makkonen et al., 2007).

Samples for the Sm-Nd study are from the olivine
gabbronorite in the SE part of the intrusion.

All other sampled intrusions are located in the Ko-

talahti area.

3.3. Kotalahti

In the Kotalahti area, Archaean rocks are overlain
by Palaeoproterozoic quartzites, limestones, carbon-
ate rocks, sulfide-bearing black schists and diopside-
banded amphibolites, structurally, if not stratigraphi-
cally overlain by amphibole feldspar gneisses, cordier-
ite mica gneisses and mica gneisses. However, the D2
thrusting has commonly disrupted the primary stra-
tigraphy. Svecofennian thermal and tectonic activity
was strong around the Archaean Kotalahti Dome, as
indicated by the presence of allochthonous Archacan
gneiss units and by the schollen-schlieren migmatites
formed during D, (Mikinen & Makkonen, 2004).
Among the studied intrusions, Rytky and Kotalahti
probably represent the deepest stratigraphical level,
because they formed at the contact between the Ar-
chaean and Proterozoic rocks or within the Archaean
rocks. On the other hand the Luusniemi intrusion is
located closest to a larger area of the Archaean base-
ment (Fig. 1).

The Kotalahti intrusion (Fig. 1, no 3) is a subverti-
cal sheet with a length of approximately 1.3 km and a
maximum width of 200 m. The southernmost intru-
sive body extends downwards to a depth of more than
1000 meters (Papunen, 2003). The wall rocks of the
intrusion consist of Archaean gneisses. The U-Pb zir-
con age obtained for a gabbro in the Kotalahti intru-
sion is 1883 + 6 Ma (Gaal, 1980).

The rock types range from olivine cumulates
to olivine-enstatite cumulates, orthopyroxenites,
poikilitic gabbros, ophitic gabbronorites, and dior-
ites (Papunen, 2003). Among the peridotitic rocks,
coarse-grained lherzolite is found in the stratigraph-
ic footwall and is overlain by medium-grained lher-
zolite (Mikinen & Makkonen, 2004). Disseminated
sulfides are common in ultramafic rocks and poikil-

itic gabbros whereas ophitic gabbros and diorites are

almost barren. Breccia-type sulfides occur as irregu-
lar masses, commonly along the contacts in the thin-
ner central part of the intrusion. A separate massive
offset, called the Jussi ore body, is present as a sub-
vertical slab in the black-schist and calc-silicate wall
rock some 150 m east of the main ore body (Papu-
nen, 2003). The total production at Kotalahti during
1959 — 1987 was 12.3 Mt at 0.7 % Ni and 0.3 % Cu
(Puustinen et al., 1995).

Samples for the Sm-Nd study are from the coarse-
grained lherzolite, medium-grained lherzolite and
coarse-grained websterite in the northern part of the

intrusion (Mertakoski).

3.4. Rytky

The surface section (0.5 x 1 km) of the Rytky intru-
sion (Fig. 1, no 4) comprises two blocks separated by
Proterozoic supracrustal rocks and Archacan tonalite
gneisses. The SE block is mainly surrounded by Ar-
chaean rocks and the NW block by Proterozoic rocks.
The intrusion was originally funnel-shaped and lay-
ered. A minor part of the intrusion is represented by
sills located below the main intrusion within the Ar-
chaean tonalite gneiss. Fragments of the intrusion
were incorporated into the surrounding gneisses dur-
ing D, overthusting. During D, the magmatic layer-
ing was folded into a subvertical orientation (Miki-
nen & Makkonen, 2004).

On the basis of the three separate intrusive phases
recognized, the rock types can be grouped as follows,
beginning from the earliest phase: 1) coarse grained
lherzolites and websterites/melagabbros, 2) medium-
grained lherzolites, websterites and gabbronorites
and 3) subophitic gabbros (Mikinen & Makkonen,
2004).

Sulfides (pyrrhotite, pentlandite, chalcopyrite) are
most abundant in the coarse-grained lherzolites and
websterites/melagabbros, forming matrix ore. Sulfide
disseminations occur in the medium-grained lherzo-
lites and websterites. In places, narrow massive ore
layers are present. Indicated mineral resources are
1.54 Mt at 0.71 % Ni, 0.29 % Cu and 4.45 % S
(Finn Nickel Ltd press release, February 2007).
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Samples for the Sm-Nd study are from coarse- and
medium-grained lherzolite, coarse-grained webster-

ite, melagabbro, websterite and olivine gabbronorite.

3.5. Koirus N

Two large intrusions occur in the Lake Koirusvesi area
and according to their geographical position, they have
been named Koirus N and Koirus S intrusions. The
Koirus N intrusion (Fig 1, no 5) has a surface area of
0.5 — 1.0 x 2.5 km. According to the magnetic inter-
pretation the magnetized units within the intrusion ex-
tend downwards to a depth of 400 m and dip steeply.
Intrusion contacts have not been intersected but mica
gneisses occur in outcrop in the immediate surround-
ings. The main rock type in the intrusion is norite
with local gabbronorite and interlayers of websterite.
Two serpentinite bodies, up to 200 m wide, have been
found in the central part of the intrusion. An olivine
websterite layer, more than 50 m thick was intersect-
ed at a depth of 200 — 300 m. Minor sulfide dissemi-
nations occur in norite (Ni < 0.3 wt.%) but no nickel
mineralization has been found within the intrusion.
Samples for the Sm-Nd study are from one of the

serpentinite bodies and from the olivine websterite.

3.6. Koirus S

The Koirus S intrusion (Fig.1, no 6) has a somewa-
hat circular surface section about 1 km in diameter. It
is enclosed by mica gneisses and composed mainly of
gabbroic rocks — gabbronorite and norite — with small
amounts of hornblende gabbro and cummingtonite
gabbro. Ultramafic rocks are present in the central
part of intrusion, where they form a dunite-peridot-
ite unit up to 100 m in thickness. Peridotite is main-
ly lherzolitic in mineral composition (minor wehrl-
ite). Websterite layers are common within and near
the peridotite. The stratigraphic footwall of the ultra-
mafic unit is towards the SE, based on the whole rock
and mineral chemistry (Makkonen & Fkdahl, 1984).
Sulfides occur as weak to moderate dissemination in
the peridotite-dunite unit, but the nickel content is

low, usually less than 0.4 wt.%.

Samples for the Sm-Nd study are from the lherzo-
lite in the NE end of the ultramafic unit.

3.7. Luusniemi

The Luusniemi intrusion (Fig. 1, no 7) is composed
of gabbro and peridotite-pyroxenite units, which have
been juxtaposed tectonically. At the present erosion
level, the maximum dimension of the gabbro unit
is about 5 km and that of the ultramafic unit near-
ly 1 km. The ultramafic unit is cone-shaped with the
hanging wall contacts dipping about 45 degrees. The
surrounding rocks are mica gneisses and granitoids.
Granitoids are also known to intersect the ultrama-
fic unit. The main minerals in the gabbroic rocks are
plagioclase and clinoamphibole. The rock types in
the ultramafic unit include partly serpentinized lher-
zolites, clinopyroxene dominated olivine websterites
and websterites containing locally abundant magnet-
ite. Gabbroic rocks are only locally present. A weak
magmatic lamination is evident in the peridotites.
Some olivine grains are heavily corroded and in plac-
es magmatic deformation lamellae are visible in oliv-
ine. These features suggest that olivine has been trans-
ported and that intrusion took place in several phases.
Sulfides are very rare in the Luusniemi intrusion and
they have been oxidised to magnetite in the NW part
of the intrusion (Makkonen et al., 2007).

Samples for the Sm-Nd study are from the lherzo-
lite in the southern part of the ultramafic unit.

3.8. Kylmadlahti

The Kylmilahti intrusion (Fig. 1, no 8) isa narrow (50
m) N-S trending, vertical body surrounded by mica
gneiss. It is composed of homogeneous but strongly
sheared and altered wehtlitic peridotite. Metapyrox-
enite or hornblendite is found locally along intrusion
margins. Sulfide disseminations (pyrrhotite, chalcop-
yrite, rare pentlandite) are common in peridotite, but
are relatively poor in nickel and copper (Makkonen
etal., 2007).

Samples for the Sm-Nd study are from the peri-
dotite.
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4. Geochemistry of the intrusions

Whole rock data for the studied samples are given in
Table 1. It should be noted that the samples most-
ly represent the wltramafic differentiates for each in-
trusion, gabbroic samples having only been included
from the Majasaari, Térmild and Rytky intrusions.
More geochemical data for the Kotalahti intrusion
can be found in Papunen & Koskinen (1985) and
for the other intrusions in Forss et al. (1999), Mak-
konen & Mikinen (2003), Makkonen et al. (2003),
Mikinen & Makkonen (2004) and Makkonen et al.
(2007).

The parental magma for the Svecofennian intru-
sions has been shown to be of basaltic composition,
but different crystallization trends have produced a
wide variety of cumulate rocks (Mikinen, 1987; Pel-
tonen, 1995a; Makkonen, 1996; Peltonen, 2005;
Lamberg, 2005). The CMA plot (Fig. 2) reveals the
principal geochemical differences between the intru-
sions. In Rytky, Koirus N, Majasaari and for the most
part of the, Kotalahti intrusion, the principal cumu-
lus mineral after olivine was orthopyroxene, while in
Luusniemi and Kylmilahti it was clinopyroxene. Koi-
rus S and Toérmilid represent an intermediate trend.
Most of the mineralized intrusions in the Kotalahti
Nickel Belt have fractionation trends dominated by
orthopyroxene and plagioclase , whereas barren in-
trusions have clinopyroxene-dominated trends (Mak-
konen & Mikinen, 2003; Makkonen et al., 2007).
These features are also shown by the samples of this
study, although the small number of samples makes
it difficult to define clear trends. The different frac-
tionation trends have been attributed to an increase
of SiO, in the magma during assimilation of country
rock, which promotes the crystallization of orthopy-
roxene (Haughton et al., 1974). The assimilation also
increases the ALO,/CaO ratio in magma, which in
turn favours the crystallization of plagioclase instead
of clinopyroxene.

The intrusions display a relatively wide range in
incompatible element concentrations for ultramafic
rocks (Table 1). For example, Zr concentrations in

Rytky range between 15 — 73 ppm (Fig. 3). High Zr

abundances are also found in Koirus S and Majas-
aari, while the Zr content in Luusniemi is marked-
ly lower than in the other intrusions. An overall pos-
itive correlation exists between Zr and magmatic dif-
ferentiation as the relative amount of the intercumu-
lus liquid increases. However, the wide range suggests
that some other processes have also affected the ob-
served values.

The abundance of REE correlate generally with
the P,O, content, as was also found for the intrusions
in the nearby Juva area. High REE contents are as-
sociated with high P,O, and in some peridotites the
whole rock REE content is effectively equivalent to
the REE present in apatite (Makkonen, 1996). The
positive correlation between REE and P,O contents
possibly reflects the controlling influence of the pro-
portion of interstitial liquid on the concentrations of
incompatible elements. Chondrite-normalized REE
diagrams are shown in Fig. 4. The intrusions in the
Kotalahti area are shown separately for the Majasaari
and Térmili intrusions. Also Kotalahti and Rytky,
which occur close to each other (1 km), are shown
on separate diagrams. The Kotalahti and Rytky intru-
sions differ with respect to their REE contents, which
is probably due to the higher proportion of intercu-
mulus liquid in the Rytky samples (cf. Fig. 3). The
Kotalahti, Rytky and Koirus intrusions have slop-
ing LREE trends, while those in Majasaari, Tormali,
Luusniemi and Kylmilahti are more flat. The flat-
test trends are observed in the barren Kylmilahti and
Luusniemi intrusions, while conversely, the steepest
trend is found in the mineralized Rytky intrusion;
the mineralized T6rmili intrusion on the other hand,

does not display a distinct sloping LREE trend.

5. Composition of the magma

It has been proposed that the parental magma of the
Svecofennian nickel-bearing intrusions is a tholeiit-
ic basalt with an MgO content ca 12 wt.% and trace
element contents typical for arc tholeiites (Peltonen,
1995b) or for MORBs (Makkonen, 1996). Meta-
basalts consistent with the latter alternative can be

found for example in the Rantasalmi and Enonkoski
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Table I. Whole-rock analytical data of the studied samples (Rytky and Kotalahti from Makinen & Makkonen, 2004).

Sample 3 4 5 6 7 8 9 10 11

Intrusion (no) Ma(jla,)sgari Majasaari  Térmild (2) Térmild (2) Kotalaht (3) Kotalahti (3) Kotalahti (3)  Rytky (4)  Rytky (4)  Rytky (4)  Rytky (4)
Rock type Plag-bearing Olivine gab- Olivine gab- Olivine gab- ~ Lherzolite ~ Lherzolite, =~ Websterite'  Lherzolite ~ Lherzo- ~ Melagab-  Lherzolite

lherzolite bronorite bronorite bronorite coarse-gr medium-gr coarse-gr coarse-gr  lite medi- bro coarse-gr

um-gr

Country rock  Granitoids, Granitoids, ~ Tonalite Tonalite Archaean Archaean Archaean Archaean  Archaean  Archaecan  Archaean
mica gneiss mica gneiss (1.93-1.91 (1.93-1.91 gneiss, craton  gneiss, craton  gneiss, craton — gneiss, cra-  gneiss, cra- - gneiss, cra-  gneiss, cra-

Ga) Ga) margin seq.  margin seq.  margin seq. ton margin ton margin ton margin ton margin

seq. seq. seq. seq.

Ore formation barren barren ore ore ore ore ore ore ore ore ore
SiO, (wt.%) 37.35 46.73 41.40 45.10 43.16 39.68 48.37 31.56 40.27 45.72 41.85
TiO, 0.34 0.64 0.25 0.35 0.21 0.25 0.25 0.32 0.20 0.81 0.60
ARO, 6.13 20.09 9.96 7.62 4.07 4.42 5.81 4.43 4.41 9.23 7.11
FeOT 12.01 7.31 11.70 9.90 11.07 12.30 11.05 24.47 12.77 8.81 9.57
MnO 0.16 0.11 0.18 0.17 0.16 0.17 0.17 0.15 0.16 0.15 0.14
MgO 29.26 9.67 22.90 21.60 28.06 29.02 23.97 18.64 27.55 19.34 26.15
CaO 3.19 9.64 6.39 10.20 221 4.96 3.76 3.50 3.12 5.85 4.21
NaZO 0.40 2.62 0.96 0.81 0.24 0.32 0.34 0.35 0.54 0.71 1.00
K0 0.13 0.27 0.17 0.20 0.33 0.07 0.12 0.35 0.29 1.17 0.59
PzOs 0.07 0.10 0.05 0.05 0.05 0.03 0.02 0.12 0.06 0.23 0.24
Total 89.04 97.18 93.96 96.00 89.56 91.22 93.86 83.89 89.37 92.02 91.46
MDIV 21.90 34.27 26.12 23.84 20.53 19.41 17.81 44.38 26.67 28.14 26.83
Mg—numberz) 0.81 0.70 0.78 0.80 0.82 0.81 0.79 0.58 0.79 0.80 0.83
Cl (ppm) 1033 78 1020 260 587 1875 64 223 871 161 774
Ba 63 104 71 82 88 51 52 143 164 189 335
Rb 6 11 8 7 11 2 5 12 9 36 14
Sr 92 401 180 111 47 91 71 138 110 135 546
Y 13 7 7 9 4 6 5 8 6 13 10
Zr 24 39 18 20 17 13 11 36 21 65 56
Nb 2 1 1 2 3 0 0 4 1 6 7
Th <0.5 <0.5 0.25 0.25 <0.5 <0.5 <0.5 0.8 1 1.24 1.05
Pb 12 11 10 16 12 21 14 12 20 10 16
Ga 7 20 12 9 9 12 8 6 13 20 14
Zn 102 65 97 76 87 121 82 70 118 91 100
Cu 79 33 82 103 711 739 1101 4939 978 96 47
Ni 1154 303 407 330 2382 2511 2995 13080 3565 757 1535
S 637 470 890 1190 6465 10260 12350 8166 1597 20 1411
\' 95 103 120 231 63 96 139 67 63 135 90
Cr 2968 210 1972 2255 1625 970 3281 362 1860 1730 638
Sc 8 19 17 42 13 20 31 9 12 25 9
U <0.2 <0.2 0.1 0.1 0.42 <0.2 <0.2 0.42 0.6 0.65 0.41
La 2.79 4.37 2.45 2.65 3.3 2.31 1.65 11.3 4.99 18.2 16
Ce 6.36 11 4.77 5.03 7.18 5.61 3.58 25.3 11.4 43.7 37
Pr 0.81 1.54 0.63 0.71 0.8 0.83 0.44 3.03 1.56 5.53 4.52
Nd 4.28 7.04 2.8 3.2 3.84 3.83 2.24 11.7 5.94 21.3 17.2
Sm 0.96 1.97 0.76 0.94 0.66 1.05 0.63 1.97 1.31 3.73 2.88
Eu 0.32 0.79 0.35 0.35 0.19 0.33 0.16 0.59 0.37 1.09 0.78
Gd 1.11 2.25 0.94 1.34 0.91 1.07 0.7 1.98 1.21 3.96 2.94
Tb 0.2 0.35 0.16 0.25 0.12 0.19 0.12 0.27 0.17 0.48 0.35
Dy 1.25 2.17 1.15 1.57 0.63 0.96 0.82 1.42 0.84 2.55 1.68
Ho 0.24 0.43 0.23 0.33 0.13 0.24 0.15 0.29 0.22 0.45 0.33
Er 0.64 1.09 0.68 0.92 0.43 0.65 0.52 0.75 0.52 1.24 0.8
Tm 0.1 0.17 0.11 0.14 <0.1 <0.1 <0.1 0.13 <0.1 0.16 0.12
Yb 0.66 1.05 0.61 0.84 0.5 0.58 0.57 0.76 0.63 1.05 0.77
Lu 0.1 0.18 <0.1 0.13 <0.1 <0.1 <0.1 0.11 <0.1 0.16 0.11

) Intrusion numbers (1-8) as in Fig. 1.

U MDI = modified differentiation index (Gruenewaldt, 1973)
Y Mg-number = MgO/(MgO+FeOT) mol.%.
Yttrium (detection limit 0.1 ppm), Th (0.5 ppm) and U (0.2 ppm) by ICP-MS, other trace elements by XRF with the following detection limits: Sulfur ca. 100 ppm,
Cl ca. 60 ppm; Sc, V, Cr,
Pb ca. 30 ppm; Ni, Cu, Zn, Ga, Ba ca. 20 ppm; Rb, Sr, Zr, Nb ca. 10 ppm.
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Table 1. cont. Whole-rock analytical data of the studied samples (Rytky and Kotalahti from Makinen & Makkonen, 2004).

12 13 14 15 16 17 18 19 20 21 22 23
Rytky (4)  Rytky (4) Rytky (4) Rytky (4) Koirus N Koirus N Koirus S Koirus S~ Luusnie- Luusnie- Kylmilah-  Kylmilah-
(5) (5) 6) 6) mi (7) mi (7) ti (8) ti (8)
Melagabbro Websterite Websterite Oliv- Olivine  Serpenti- Lherzolite Lherzolite  Lherzolite ~ Lherzolite =~ Metaperi- Metaperi-
ine gab-  websterite nite dotite dotite
bronorite
Archacan  Archaecan  Archacan  Archaecan Mica gneiss Mica gneiss ~ Mica Mica Granitoids,  Granitoids, Mica gneiss Mica gneiss
gneiss, cra-  gneiss, cra-  gneiss, cra-  gneiss, cra- gneiss gneiss Archaean Archaean
ton margin ton margin ton margin ton margin gneiss gneiss
seq. seq. seq. seq.
ore ore ore ore interm interm interm interm barren barren barren barren
49.66 41.92 49.52 50.16 50.80 36.70 41.10 37.90 46.10 40.90 42.20 43.30
0.72 0.25 0.51 0.36 0.36 0.26 0.59 0.41 0.34 0.26 0.40 0.49
11.44 4.62 8.44 9.70 5.50 3.97 5.17 4.61 2.93 1.91 3.77 4.72
7.79 10.40 8.98 8.52 10.62 13.05 11.16 12.96 10.98 15.12 12.96 13.68
0.14 0.16 0.16 0.16 0.19 0.18 0.16 0.17 0.19 0.26 0.19 0.14
15.32 28.78 22.18 21.19 26.00 30.30 24.50 26.40 17.50 23.00 20.70 20.70
6.81 4.45 4.98 5.45 2.96 1.67 6.53 5.34 15.00 9.97 10.30 9.14
2.09 0.32 0.78 0.95 0.48 0.24 0.48 0.50 0.33 0.11 0.36 0.46
0.90 0.11 0.23 0.15 0.16 0.15 0.46 0.26 0.13 0.08 0.15 0.18
0.31 0.04 0.05 0.03 0.04 0.10 0.12 0.11 0.02 0.01 0.03 0.03
95.18 91.05 95.83 96.67 97.11 86.62 90.27 88.66 93.52 91.62 91.06 92.84
36.74 19.79 21.85 21.90 20.93 23.88 25.27 25.21 27.22 28.70 26.10 27.10
0.78 0.83 0.81 0.82 0.81 0.81 0.80 0.78 0.74 0.73 0.74 0.73
246 1848 85 35 90 1540 823 1380 177 432 531 119
343 72 108 81 83 72 269 153 50 35 41 54
19 3 8 3 8 4 15 6 5 6 8 4
832 129 137 157 88 141 178 197 89 43 36 44
15 6 10 7 6 5 12 8 6 5 8 9
73 15 31 18 20 22 42 34 12 5 23 27
6 1 2 0 3 1 8 4 1 0 2 0
1.75 <0.5 <0.5 <0.5 0.25 0.25 0.56 0.25 0.25 0.25 0.25 0.25
19 11 13 11 12 14 15 18 13 12 16 15
17 10 15 14 9 9 12 6 4 10 6 7
104 78 79 70 101 119 115 114 64 94 76 63
45 161 82 70 28 36 51 490 110 216 628 612
509 1269 645 590 281 528 391 1640 140 257 546 437
1029 158 94 870 610 892 1380 7090 925 1260 7550 7140
123 108 161 159 203 94 129 115 242 190 237 262
1367 2830 3331 2927 2260 848 2120 2390 968 751 1560 1210
23 21 32 36 26 10 23 20 75 58 54 56
0.71 <0.2 <0.2 <0.2 0.1 0.1 0.23 0.21 0.1 0.1 0.1 0.1
23.9 2.93 4.19 2.68 3.11 6.05 8.12 6.59 2.88 2.67 1.81 3.31
53.9 6.67 9.59 6.03 5.4 9.6 20.3 14.1 6.27 3.58 4.32 5.84
6.54 0.89 1.18 0.83 0.75 1.21 2.87 1.95 0.94 0.6 0.67 0.85
25.9 3.84 5.58 3.88 3.17 5.38 12.7 8.56 4.97 3.35 3.39 4.27
4.28 0.86 1.2 0.89 0.71 1.02 2.72 1.7 1.24 0.98 0.88 1.11
1.25 0.28 0.42 0.27 0.25 0.32 0.83 0.59 0.41 0.29 0.34 0.44
4.11 0.9 1.59 1.17 0.86 1.05 2.53 1.79 1.45 1.08 1.27 1.63
0.53 0.16 0.24 0.2 0.13 0.15 0.39 0.25 0.21 0.16 0.21 0.29
2.76 0.87 1.46 1.22 0.91 0.87 2.19 1.28 1.15 0.85 1.38 1.63
0.54 0.19 0.33 0.26 0.18 0.18 0.4 0.28 0.21 0.18 0.28 0.35
1.28 0.52 0.97 0.66 0.55 0.5 1.14 0.73 0.56 0.41 0.86 0.99
0.19 0.1 0.14 0.12 <0.1 <0.1 0.16 <0.1 <0.1 <0.1 <0.1 0.13
1.19 0.58 0.94 0.77 0.59 0.46 0.96 0.68 0.52 0.38 0.7 0.82

0.21 <0.1 0.16 0.1 <0.1 <0.1 0.13 <0.1 <0.1 <0.1 <0.1 0.11
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Koirus N

Koirus S
Kotalahti
Kylmalahti
Luusniemi
Majasaari

Rytky

Térmala
Parental magma
Average chilled
margin

okd 1 R/ml>g J(1 )

AV

CaO

Al,O,

Fig. 2. CMA diagram for the studied samples. Parental magma and chilled margin compositions are from Table 2.
Mineralized intrusions indicated by a closed symbol, intermediate intrusions by a half closed symbol and barren in-

trusions by an open symbol.

areas in the SE part of the Kotalahti Nickel Belt. Ul-
tramafic metavolcanic rocks (metapicrites) occurring
together with metabasalts have been described from
the same areas (e.g. Gadl & Rauhamiki, 1971; Kou-
sa, 1985; Viluksela, 1988; Makkonen, 1992, 1996).
In the Vammala Nickel Belt, only metapicrites (cort-
landites) have been described (Hikli et al., 1979; Pel-
tonen, 1990, 1995b). However, Kilpeldinen (1998)
proposed that some amphibolites may be cogenet-
ic with the Vammala Belt nickel-bearing intrusions.
Lamberg (2005) estimated parental magma composi-

tions for the Laukunkangas intrusion (Kotalahti Belt)

and several Vammala Belt intrusions, with the MgO
contents ranging between 6.6 and 12.5 wt.%.
Makkonen (1992, 1996) concluded that the
metapicrites are metabasalts containing abundant
phenocrystic olivine and that the accumulation of
olivine took place in flow conduits or during erup-
tion. Nickel mineralization is present in metapic-
rites at Juva and Rantasalmi and northwest of Mikke-
li (Outokumpu Oy, Makkonen, 1984, 1992, 1996;
Laitakari, 1985). Geological evidence supporting
the genetic relationship between the nickel-bearing

intrusions and metapicrites are found in Juva area,
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where within a single linear belt of nickel deposits
(Rantala-Honkamiki-Kiiskilinkangas), the host rock
of the nickel mineralization ranges in composition
from metapicrite to intrusive peridotite (Makkonen,
1992, 1996).

Differences in trace element patterns between the
metapicrites and intrusions are, however, evident as
the latter usually have higher LILE contents and a
wider range of trace element abundances (Peltonen,
1995b; Hill et al., 2005). It has been proposed by Hill
etal. (2005) that the metapicrites (and associated me-
tabasalts) and nickel-bearing intrusions have a com-
mon mantle source but that their magmas evolved

along distinct paths.

Table 2 shows an inferred basaltic composition
representing the source magma from which the nick-
el-bearing intrusions were formed, based on whole
rock analytical data for metabasalts from the Ran-
tasalmi, Juva and Enonkoski areas (Hill et al., 2005).
For comparison, an average of chilled margin com-
positions from the Kotalahti Belt intrusions and an
EMORB composition are also shown.

The proposed parental magma composition is
similar to EMORB, as indicated by the EMORB-
normalized spidergram (Fig. 5). Compared to the
parental magma, the average chilled margin has ele-
vated LILE concentrations and a distinct Nb-Ta de-

pression. Otherwise the form of the profiles is sim-
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Table 2. Proposed parental magma composition for the
Svecofennian 1.88 Ga nickel-bearing mafic-ultramafic in-
trusions compared to EMORB and to an average chilled
margin of the intrusions in the Kotalahti Nickel Belt

Parental EMORB Chilled

magma margin
n 13 6
SiO, (wt.%) 46.51 51.20 49.52
TiO, 1.11 1.69 1.21
ALO, 14.38 16.00 14.96
FeOT 11.88 8.46 9.44
MnO 0.19 0.16 0.18
MgO 9.37 6.90 8.19
CaO 10.49 11.50 10.10
Na,O 2.57 2.74 2.51
K,0 0.23 0.43 1.04
PO, 0.09 0.15 0.18
Total 96.83 99.23 97.32
S (ppm) 286 582
Cr 391 330 207
Ni 246 143 79
Co 54 40
Cu 71 41
Zn 89 84
Ba 81 57 309
Rb 4 5.04 28
Sr 200 155 548
\% 268 245
Y 22 22 20
Zr 61 73 86
Hf 2 2.03 2
U 0.22 0.18 0.53
Ta 0.48 0.47 0.45
Th 0.41 0.6 1.45
Nb 5.90 8.3 6.75
La 4.97 6.3 14.46
Ce 12.64 15 33.42
Pr 1.97 2.05 4.67
Nd 9.14 9 20.00
Sm 2.74 2.6 4.19
Eu 1.16 0.91 1.30
Gd 3.39 2.97 4.13
Dy 3.73 3.55 3.70
Tb 0.61 0.53 0.65
Ho 0.83 0.79 0.79
Er 2.25 2.31 2.16
Tm 0.34 0.356 0.31
Yb 2.04 2.37 1.97
Lu 0.33 0.354 0.30

Major elements for EMORB after Kerrich & Wyman (1996), trace
elements after Sun & McDonough (1989)
Parental magma and chilled margin values from Hill et al. (2005).

ilar. Negative Nb anomalies (Ta data not available)
also are evident in the analyses of intrusive cumu-
lates. The average metasedimentary (WK1; Lahtinen,
2000) and Archaean crustal (AC1; Lahtinen, 2000)
compositions conform to the form of the intrusive
samples in term of their distinct Nb-(Ta) depressions.
In the REE pattern (Fig. 4) the LREE enrichment is
very clear in the chilled margin compared to the pa-

rental magma.

6. Sm-Nd investigations

In order to characterize the origin and evolution of
the magma of the mafic-ultramafic intrusions 23 Sm-
Nd isotope analyses were made on samples from eight
intrusions. One of the main questions to address has
been whether the ore-bearing intrusions are distinct
from barren ones in terms of their initial Nd isotope
composition. The age of the intrusions is close to
1880 Ma, based on U-Pb zircon dating on gabbros
from Kotalahti (1883 + 6 Ma, Gail, 1980) and oth-
er related intrusions, such as Laukunkangas, some 80
km SE of Kotalahti (1880 + 3 Ma; Huhma, 1986).
The Sm-Nd data are technically good and provide €
values at 1880 Ma from -2.4 to +2.0 (Table 3, Fig. 6).
These should represent the initial isotopic composi-
tion of the rocks, as post-magmatic REE fractiona-
tion is considered to have been negligible.

When evaluating the results, an error in € ,(1880
Ma) of ca. +0.4 units should be taken into account.
The samples from Térmild and Majasaari yield dis-
tinctly positive values of around +2, and the two anal-
yses from Luusniemi intrusion have £ (1880 Ma) of
-2.4. All other data are distinct from these and pro-
vide an average value of -0.7 = 0.3. Excluding two
analyses from the Rytky intrusion, all data from Koi-
rus N, Koirus S, Kotalahti, Rytky and Kylmilahti are
within error, in the range -0.7 = 0.3 (Fig. 6). The
two intrusions with positive epsilon are clearly con-
fined to the Svecofennian domain. In the immediate
vicinity of the Térmild body occur 1.92 Ga tonalit-
ic gneisses, which are the oldest known rocks in the
Svecofennian domain, and which have yielded initial

€, values of ca. +3 (Lahtinen & Huhma, 1997). The
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Fig. 4. Chondrite-normalized REE diagrams for intrusions, the proposed parental magma and average chilled mar-
gin.
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Fig. 5. EMORB-normalized (Sun & McDonough, 1989) spidergrams for intrusions, the proposed parental magma, av-
erage chilled margin, average Western Kaleva metasediment (WKI, Lahtinen 2000, table 2) and average Archaean
crust (ACI, Lahtinen, 2000, table 2). Because Nb in the study intrusions has been analysed by XRF resulting | to 8
ppm, the Nb minimum in the spidergram is only qualitative (comparisons between XRF and ICP-MS Nb analyses
have shown that XRF Nb results can however be used below contents of 10 ppm).
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Luusniemi intrusion with € ,(1880) of -2.4 is located
close to the exposed main Archaean basement.
Another objective of the study is to compare the
Sm-Nd isotope compositions of ore-bearing and bar-
ren intrusions. The ore-bearing intrusions yield av-
erage € ,(1880 Ma) -values of +1.5 + 0.4 (T6rmild),
-1.2 £ 0.2 (Kotalahti) and -0.6 + 0.5 (Rytky), the in-
termediate Koirus bodies give an average value of -0.6
+ 0.5, and the barren intrusions have & (1880 Ma)
of -2.4 + 0.2 (Luusniemi), -0.1 + 0.4 (Kylmailahti)
and +1.9 £ 0.3 (Majasaari). Consequently, no rela-
tionship has been found between the degree of nickel

mineralization and initial €, values.

7. Discussion

Previous Sm-Nd studies have shown that depleted
mantle with €, values close to + 4 at approximate-
ly 2.0 Ga was the source for several mafic-ultrama-
fic rocks in the Fennoscandian Shield (e.g. Huhma et
al., 1990; Hanski et al., 2001b; Hanski & Huhma,
2005). Further evidence for a major contribution
from such sources is provided by the 1.92 Ga juvenile
felsic crust in the Kotalahti Nickel Belt, which is char-
acterized by initial epsilon values of ca. + 3 (Laht-
nen & Huhma, 1997). If the parental magma for the
Svecofennian nickel-bearing intrusions was similar to
the proposed magma in Table 2, then the intrusions
could also have been derived from a depleted mantle
source with initial epsilon values near + 4.

The Sm-Nd data for the Svecofennian metapic-
rites/metabasalts and mafic-ultramafic intrusions are
shown in Fig. 8, and include several previously un-
published analyses (see also Appendix 1). The data
for the intrusions seem to plot into two groups. A
number of intrusions yield € ,(1880Ma) -values
close to 0 (Laukunkangas, Juva, Stormi, Porrasnie-
mi), whereas others yield distinctly positive values up
to +3 (Ylivieska, Hyvinkii, Juva, Parikkala).

It is evident that many mafic-ultramafic rocks pro-
vide much lower initial epsilon values than the deplet-
ed mantle value discussed above, which implies the
existence of mantle heterogeneity or the involvement

of crustal contamination in their genesis. Alkaline

rocks with high REE abundances and €, values close
to zero evidently suggest that mantle contained isolat-
ed reservoirs with distinct isotopic compositions (e.g.
Peltonen et al., 1996). High degrees of enrichment
can occur within mantle plumes, and metasomatized
continental lithospheric mantle sources can generate
low initial values. On the other hand, several lines of
evidence show that assimilation of crustal material has
had a major influence on the evolution of mantle-de-
rived magmas. However, the nature and timing of the
contamination processes have in many instances re-
mained obscure. In the present study area, interpreta-
tions have been presented that range from 77 situ con-
tamination (Mikinen & Makkonen, 2004; Makko-
nen et al., 2007) to source contamination, z.e. assim-
ilation of crustal material at great depth in a subduc-
tion zone environment (Patchett & Kouvo, 1986).
In the present case, geological evidence is availa-
ble to assist in evaluating the relative importance of
mantle heterogeneity or crustal contamination. The
most important finding is that the intrusions hav-
ing the lowest €, values occur close to the Archaean

granitoids (€, ca. -10), while the intrusions having

Nd
the highest €, values occur within granitoids having

€, ca. +3. Thus the €, values of the intrusions cor-
relate with the &, values of the country rocks, which
suggests that crustal contamination was a more like-
ly process. Many earlier studies of Svecofennian 1.88
Ga mafic-ultramafic have also presented evidence for
crustal contamination (e.g. Peltonen, 1995a, 1995b,
2005; Mikinen & Makkonen, 2004; Makkonen,
1996; Lamberg, 2005; Makkonen et al., 2007). Mik-
inen & Makkonen (2004) found that in the Rytky
intrusion, the first and the most primitive intrusive
phase (represented by the coarse-grained lherzolite)
was the most contaminated. In Fig. 7, €, is plot-
ted against MgO and AL O, for the Rytky and Ko-
talahti samples. These two intrusions have similar
rock types and wall rocks (Mikinen & Makkonen,
2004). The lowest &, values tend to be in the sam-
ples richest in MgO and poorest in AL,O,, which is in
agreement with the conclusion of Mikinen & Mak-
konen (2004). The high degree of contamination in

the MgO-rich rocks can be explained by the high la-
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tent heat of the crystallization of MgO-rich cumu-
lates and therefore an increased ability to assimilate
wall rock material. This interpretation is also consist-
ent with a crustal origin for the low €, values. Man-
tle-derived values should not be expected to display
any correlation with magmatic differentiation.

The trace element contents of the intrusions and
the proposed parental magma will now be considered
in further detail. The differences between the intru-
sion sample compositions and the inferred parental
magma, notably, the Nb-(Ta) depression in the spider
diagrams and the negative slopes for LREE of the in-
trusive samples are both typical of crustally contam-
inated rocks (cf. Figs. 4 and 5). On the other hand,
negative Nb anomalies are also characteristic features
of subduction-related magmas. This kind of anomaly
is generally attributed to decoupling of Nb from in-
compatible elements such as Th and Ce during de-
hydration and partial melting of subducted oceanic
lithosphere. Thorium and Ce are transferred by flu-
ids derived from the subducting plate to the sub-arc
mantle wedge, whereas Nb is preferentially retained
in the subducting slab by amphibole + titanite and
rutile (Pearce, 1996). Thus, there are two alternative
mechanisms for generating the negative Nb anom-
alies: 1) selective contamination in the subduction
zone (source contamination) and 2) contamination
in the crust.

The abundance of Zr and Zr/Ti ratios have been
used to indicate the presence of crustal contamination
in Svecofennian mafic-ultramafic intrusions (Makko-
nen, 1996; Makkonen & Mikinen, 2003; Mikinen
& Makkonen, 2004; Makkonen et al., 2007). Be-
cause Zr is an incompatible element it should have a
much lower concentration in an ultramafic cumulate
than in the respective magma. However in many of
the studied intrusions, especially in Rytky, the Zr con-
tent in ultramafic cumulates can attain typical mag-
matic values (cf. Tables 1 and 2 and Fig. 3). The most
typical country rock for the intrusions, mica gneiss,
contains three to four times more Zr than the paren-
tal magma (an average of 217 ppm from 47 samples
after Lahtinen (2000) and an average of 184 ppm
from 72 samples after Makkonen et al. (2007). As-

similation of mica gneiss thus effectively increases the
Zr content of the magma. Archaean crust has an av-
erage Zr content of 162 ppm (129 samples, Lahti-
nen, 2000), being thus comparable to the Proterozoic
mica gneisses. The 1.93 — 1.91 Ga gneissic tonalites
surrounding the Térmild intrusion also have similar
Zr values (Lahtinen, 1994).

Although mantle heterogeneity as an explanation
for the range of the initial € -values cannot be en-
tirely excluded, on the basis of the above discussion,
we conclude that interaction with crustal rocks is the
most probable explanation for the low initial €, val-
ues of the studied intrusions. Because there is a gen-
eral geochemical correlation with the geological en-
vironment (juvenile crust vs. Archacan domain) and
with the country rock (not necessarily intrusion wall
rock), contamination probably took place in the up-
per crust. The elevated contents of Rb and Th, which
have higher abundances in the upper than in the low-
er crust (Wilson, 1993), also favour the upper crust
as the principal contaminant. In Fig. 8 Sm-Nd iso-
tope data for Svecofennian mafic-ultramafic intru-
sions are compared with those of the metapicrites/
metabasalts representing the proposed parental mag-
ma and also with Svecofennian metasediments and
Archaean rocks in Finland. The studied intrusions of
the Kotalahti area plot away from the parental mag-
ma composition towards the metasediments and Ar-
chaean rocks, while the Majasaari and Térmaild intru-
sions correspond more closely to the magmatic com-
position. The intrusions in the Kotalahti area have
low initial €, values compared to other Svecofennian
intrusions and the inferred parental magma compo-
sition (metapicrites/metabasalts), consistent with the
proposed contamination by Archaean granitoids and
Svecofennian metasediments.

A simple crustal contamination model involves
bulk mixing of a magma and contaminant. Howev-
er, in many cases this approach has proven unsatisfac-
tory, in that different elements giving mutually con-
flicting results with respect to the degree of contami-
nation. More sophisticated models take into account
the effects of combined assimilation of crust, frac-

tional crystallisation, magma recharge and eruption
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(Aitcheson & Forrest, 1994). In the AFC process (As-
similation and Fractional Crystallisation, DePaolo,
1981), contamination is accompanied by concurrent
fractional crystallization and this is widely considered
to occur in magma chambers, where the heat released
by crystallization allows fusion of wall rocks (Wil-
son, 1993). In the AFC process, the most fractionat-
ed rocks should be most contaminated, because the
residual melt has a longer time to interact with the
contaminant than the melt represented by the ear-
ly cumulates. In contrast, Devey & Cox (1987) de-
scribed an AEC process (Assimilation and Equilibri-
um Crystallisation), in which crystallisation and as-
similation proceed together but fractionation is sup-
pressed. Such a process is envisaged to occur during
magma ascent rather than within a magma chamber
and produces a positive correlation between the de-
gree of contamination and the Mg-number, because
of the higher temperature of the most primitive in-
trusion phase.

The results of this study are more consistent with
an AEC process than an AFC process since the most
MgO-rich cumulates in Rytky and Kotalahti tend to
have the lowest €, values (cf. Fig. 7). A similar type
of contamination is also found in some other Sve-
cofennian intrusions, where the Zr content in peri-
dotite is higher than in gabbro (Makkonen, 1996).
If the AEC process is accepted, then in situ contam-
ination should probably be neglected, because the
AEC process rather takes place in a magma conduit.
On the other hand, in the Rytky intrusion, accord-
ing to Mikinen & Makkonen (2004), the magma
chamber was still open during the first magma pulse.
Therefore, magma could have been actively flowing
through the chamber with conditions probably more
like in a flow conduit than in the final closed cham-
ber. In the case of the Luusniemi intrusion howev-
er, contamination during magma ascent is suggested.
This intrusion has the lowest €, value, although the
wall rock is not Archaean gneiss. Consequently, the
magma forming the Luusniemi intrusion has passed
through Archacan rocks below the present erosion
level. This is in accord with the observation that Ar-

chaean gneiss some 2 km NW of the Luusniemi in-

13i

trusion plunges to SE under the intrusion (Mikinen,
pers.comm., 2006).

If an AFC process was not important in the con-
tamination event, bulk contamination calculations
(Table 4) can be used to evaluate the amount of as-
similated crust. The bulk distribution coefficient
of Nd for ultramafic cumulates is very low (£ 0.1),
which makes the difference between the AFC and
bulk contamination calculations small (Aitcheson &
Forrest, 1994). As can be seen from Table 4, to obtain
a negative €, (1880 Ma) value for the studied intru-
sions, bulk contamination of about 10 % by Archae-
an gneiss and about 30 % by Svecofennian metasedi-
ment is required (similar results were obtained also by
Patchett & Kouvo, 1986 and Huhma, 1986). In the
case where only 10 % contamination has taken place
the overall changes in trace element compositions are
small. This, together with a small amount of inter-
cumulus liquid, may explain the low incompatible
element concentrations of the Luusniemi intrusion
compared to other intrusions. In other words, the low
trace element content coupled with the most negative
€., (1880 Ma) value in the Luusniemi intrusion sug-
gests a contamination process involving mainly Ar-
chaean gneiss material.

For comparison, in a recent study of the Ni-Cu-
PGE bearing Expo Intrusive Suite (1.88 Ga) in the
Cape Smith Fold Belt, New Quebec, Mungall (2007)
concluded that the amount of assimilated upper crust
in many cases was about 15 % with a maximum of
up to 50 % by mass. Makkonen (1996) estimated
the amount of crustal assimilation to be 5 — 40 %
by mass in the Juva area in the Kotalahti Nickel Belt
(1.88 Ga).

Considering the calculated results of a simple bulk
contamination process, one must bear in mind that
some variation in the contamination processes be-
tween the intrusions is probable. It is likely that the
processes were complex, since several phases of con-
tamination could have occurred during passage of the
magma through the feeder channels before reaching
its final site of emplacement. Contamination could
also have been somewhat selective. Thus, some of the

differences in the observed whole-rock geochemical



Sm-Nd data for mafic-ultramafic intrusions in the Svecofennian (1.88 Ga) Kotalahti Nickel Belt, Finland — implications...

195

Table 4. Variations in €Nd (1880 Ma) values in a bulk mixing process.

Mixture of Archaean gneiss with €Nd -10 and
magma with ENd +3.7

Proportion of Proportion of

Mixture of Svecofennian gneiss with €Nd - 2 or -3.3 and
magma with ENd +3.7

Proportion of Proportion of

Archaean gneiss magma €Nd Mixture Svecof. gneiss magma €Nd Mixture
Nd 30 ppm Nd 9.14 ppm Nd 30 ppm Nd 9.14 ppm eNd-2 eNd-3.3
0.01 0.99 3.3 0.01 0.99 3.5 3.5
0.02 0.98 2.8 0.02 0.98 3.3 3.3
0.03 0.97 2.4 0.03 0.97 3.2 3.1
0.04 0.96 2.1 0.04 0.96 3.0 2.9
0.05 0.95 1.7 0.05 0.95 2.9 2.7
0.06 0.94 1.3 0.06 0.94 2.7 2.5
0.07 0.93 1.0 0.07 0.93 2.6 2.3
0.08 0.92 0.7 0.08 0.92 2.4 2.1
0.09 0.91 0.3 0.09 0.91 2.3 2.0
0.10 0.90 0.0 0.10 0.90 2.2 1.8
0.15 0.85 -1.3 0.15 0.85 1.6 1.1
0.20 0.80 -2.5 0.20 0.80 1.1 0.5
0.25 0.75 -3.5 0.25 0.75 0.7 0.0
0.30 0.70 -4.3 0.30 0.70 0.4 -0.4

features indicating contamination may reflect differ-
ences in the contamination process.

One of the purposes of this study was to compare
the Sm-Nd isotope compositions of the mineralized
and barren intrusions, Ze. to investigate whether the
mineralized intrusions have lower €, (1880 Ma) val-
ues than the barren ones. This might be the case if
contamination of (sulfide-bearing) sediments was a
major cause for mineralization. However, no such
relationship could be found. This is partly because
there were two main types of contaminants: Archae-
an gneiss with an €, (1880 Ma) value of about -10
and Svecofennian metasediment with an €, (1880
Ma) value of about -2. Thus the differences in the
€., (1880 Ma) values result mainly from the contam-
inant type and not from the amount of contamina-

tion.

7. 1. Tectonic implications

The results of this study provide additional informa-
tion on the Archaean/Proterozoic boundary in the
Kotalahti Nickel Belt. Many authors have modelled
the evolution of the Archaean/Proterozoic boundary
and presented different views on the direction of the
possible subduction (e.g. Gadl, 1982, 1986, 1990;
Ward, 1987; Ekdahl, 1993; Lahtinen, 1994; Ruo-
toistenmiki, 1996; Nironen, 1997; Lahtinen et al.,
2005). On the basis of the fact that Archaean influ-
ence (low &, value) is controlled by the Archaean/
Proterozoic contact at the present erosion level and as-
suming that the magma conduit in the upper crust
was vertical to subvertical, we can assume that the
Archaean basement was not present further west at
deeper levels during magma ascent at 1880 Ma.

The metatholeiites representing the parental mag-
ma for the Svecofennian nickel-bearing intrusions oc-

cur in the Savo area together with limestones, cherts
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and iron formations and commonly exhibit pillow
structures. These features, together with the fact that
the tholeiitic magmas have an EMORB affinity, sug-
gests a cratonic margin or marginal basin environment
for eruption - e.g. a back arc setting. Similarly, Viluk-
sela (1988) proposed a back arc basin environment
for the Rantasalmi tholeiites and picrites. Metapic-
rites genetically related to the metatholeiites are abun-
dant all around the Central Finland Granitoid Com-
plex (CFGC). This is in accord with the presence of
nickel-bearing intrusions around the CFGC, an ob-
servation already noted in the 1970s (Hikli, 1971;
Hikli et al., 1979). Consequently, it is reasonable to
propose an episode of rifting near the craton margin,
accompanied by widespread mafic volcanism. Slight-
ly later (at 1.88 Ga), during the main Svecofennian
collisional and tectonic thickening stage (cf. Makko-
nen, 2005), the mafic magma formed nickel-bearing
intrusions within the Svecofennian sediments, craton
margin sequence and Archaecan gneisses.

The results of this study provide some useful in-
sights with respect to nickel exploration: 1) The Sm-
Nd isotope data are compatible with the view that the
metatholeiite-metapicrite series represents the paren-
tal magma for the nickel-bearing intrusions and there-
fore, the geochemistry of the metatholeiites/metapic-
rites can be used in nickel exploration. 2) Because the
wall rock Sm-Nd isotopic composition does not nec-
essarily correlate with that of the intrusion, crustal
contamination has also taken place during magma as-
cent, either in flow conduits or in intermediate mag-
ma chambers. Therefore, in such cases sulfide segre-
gation has probably taken place before the final em-
placement of the magma, as also proposed by Pelto-
nen (1995a, 1995b, 2005) and Lamberg (2005).

8. Conclusions

1) The Sm-Nd data for the eight intrusions provide
initial €, values at 1880 Ma from -2.4 to +2.0.

2) Initial €, values of the intrusions correlate with

the geological domain and the country rock type.

The Majasaari and Térmili intrusions, with posi-
tive €, values, occur within the Svecofennian do-
main, in proximity to juvenile 1.92 Ga tonalitic
gneisses, which have yielded initial &, values of
ca. +3. The Luusniemi intrusion with €, -2.4 is
located close to exposed Archaean crust. Although
mantle heterogeneity as an alternative explanation
for the range of the initial €, values cannot be en-
tirely excluded, the results support the concept of
contamination by Archaean material in proximi-
ty to the currently exposed craton margin, while
militating against the presence of buried Archaean
crust further west at 1.88 Ga. No relationship can
be found between nickel mineralization and ini-
tial €, values. This is partly because the differenc-
es in the €, (1880 Ma) values result mainly from
the contaminant type (Archaen gneiss/Svecofen-
nian metasediment) and not from the amount of

contamination.

3) The average composition of the metabasalts in the
southern Savo area is considered to be equivalent
to the parental magma for the intrusions, com-
position of this magma being close to EMORB.
Metapicrites occurring widely around the Central
Finland Granitoid are cogenetic with the metaba-
salts. The initial €, values for the metapicrites are
near +4 suggesting a depleted mantle source for
the parental magma. The higher MgO content of

the metapicrites is due to olivine accumulation.

4) A simple bulk-mixing model between the parental
magma and Svecofennian metasediment/Archaean
gneiss yields initial € values similar to those ob-
tained from the intrusion samples. Assimilation of
about 20 % of Archaean gneiss is required to pro-
duce the lowest obtained initial £, value (-2.4).
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