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Abstract

Multi-grain isotope dilution and secondary ion microprobe zircon U-Pb as well as whole-
rock Rb-Sr isotope dilution data on the late Paleoproterozoic Suomenniemi rapakivi granite
complex (exposed on the northern flank of the Wiborg batholith in southeastern Finland)
are discussed in the light of point-specific errors on Pb/U and proposed new values of
the decay constant of 'Rb, A,.. U-Pb zircon data on hornblende granite and biotite granite
of the main metaluminous-marginally peraluminous granite fractionation series of the
Suomenniemi batholith indicate crystallization in the 1644-1640 Ma range, with a
preferred age at 1644+4 Ma. A cross-cutting hornblende-clinopyroxene-fayalite granite
is probably slightly younger, as are quartz-feldspar porphyry dikes (1634+4 Ma) that cut
both the main granite series and the metamorphic Svecofennian country rocks of the
Suomenniemi batholith. Recalculation of whole-rock Rb-Sr data published on the main
granite series of the batholith by Ramo (1999) implies errorchron ages of 1635+10 Ma
and 1630+10 Ma and a magmatic ¥Sr/#Sr, of 0.7062+0.0024. This relatively high initial
ratio is indicative of a major Proterozoic crustal source component in the granites of the
batholith. The main granite series of the batholith probably cooled relatively rapidly to
and below the closure temperature of the Rb-Sr isotope system, with little subsequent
subsolidus adjustment. The three discrete silicic magmatic phases of the batholith (the
main granite series, the hornblende-clinopyroxene-fayalite granite, and the quartz-feldspar
porphyry dikes) were all probably emplaced before the main volume of rapakivi granite
(the Wiborg batholith proper) in southeastern Finland. The Suomenniemi batholith thus
represents an early magmatic precursor to the classic Wiborg batholith and was emplaced
clearly before the massive rise of isotherms associated with the ascent and crystallization
of the magmas that formed the bulk of the Wiborg batholith system.
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1. Introduction

The classic Wiborg rapakivi granite batholith of
southeastern Finland and its satellite intrusions were
emplaced into the Paleoproterozoic Svecofennian
metamorphic crust as a sequence of discordant,
epizonal complexes that are overwhelmingly silicic
but also include members of basic and rare
intermediate rocks (Haapala & Rims, 1990; Rimo
& Haapala, 2005). The main igneous body — the
Wiborg batholith proper —is ~ 150 km in its current
exposed diameter, with one-third concealed under
the Gulf of Finland and underneath Neo-
proterozoic-Paleozoic sedimentary rocks in the
south. The Wiborg batholith probably constitutes
a relatively thin (-~ 10-15 km) intrusion (as
compared to its diameter), exposed and beheaded
by extensional tectonics well before the Phanerozoic
Eon (Korja & Elo, 1990; Kohonen & Rima, 2005;
see also Kohonen, 2015). On the northern flank of
the batholith, two prominent satellite igneous bodies
are found (Fig. 1): the Suomenniemi complex,
which is composed of an extensive granite
fractionation series, associated silicic and basic dike
rocks, and minor anorthosite and peralkaline alkali-
feldspar syenites (Pipping, 1956; Simonen & Tyr-
viinen, 1981; Sundsten, 1985; Rimo, 1991), and
the Ahvenisto complex, which comprises, besides
granites, a major body of massif-type anorthosite
and associated mafic intermediate (monzodioritic)
rocks as well as silicic and basic dikes (Savolahti,
1956; Johanson, 1984; Alviola et al., 1999; Heino-
nen et al., 2010a). U-Pb mineral geochronological
work performed on the rapakivi granites of south-
eastern Finland shows that the Wiborg batholith
and its satellite bodies were emplaced at the end of
the Paleoproterozoic, mainly between 1650 Ma and
1625 Ma (Vaasjoki et al., 1991). Taking into account
of the external analytical errors of better than 0.25
%, U-Pb zircon ages of various plutonic and
hypabyssal rocks of the Wiborg batholith imply a
minimum duration of the magmatism of 20 m.y.
(from 1642 Ma to 1622 Ma) (Rimo et al., 2014).
Geochronological data also suggest that the granite
bodies on the northern flank of the Wiborg
batholith are older than the main batholith (Vaasjoki

et al., 1991; Rimo et al., 2014).

The Suomenniemi complex due north of the
main Wiborg batholith (Fig. 1) has been the subject
of extensive geochronological and other isotope
geochemical work. Granites, a minor massif-type
anorthosite occurrence, sodic peralkaline syenites,
and silicic and basic dikes have been analyzed using
various isotopic methods, with U-Pb mineral data
being available for 11 samples (Siivola, 1987;
Vaasjoki et al., 1991), Sm-Nd whole-rock and Pb-
Pb whole-rock and alkali feldspar data for, in total,
29 samples (Rimé, 1991), Rb-Sr whole-rock data
for ten samples (Rimo, 1999), oxygen-in-zircon
(laser-fluorination) data for two samples (Elliott et
al., 2005), and Lu-Hf-in-zircon data for two samples
(Heinonen et al., 2010b). These results imply an
overall emplacement of the granites of the batholith
at - 1640 Ma and a major Paleoproterozoic crustal
component in them (g, of -3 to -1; neodymium
Tou model ages of - 2.1 Ga; Stacey & Kramers,
1975, second-stage 2**U/**Pb of 8.73 to 8.75; ¥Sr/
86Sri of - 0.7066; 8'80O-in-zircon of 8.1%o; €, of -
0). The mafic rocks of the Suomenniemi complex
have more juvenile (mantle-like) isotope
compositions (SN . of -1 to +1; 8¥O-in-zircon of
5.5%o; €, of +4).

In view of the fact that point-specific errors on
the 2Pb/?**U and ?”’Pb/*°U ratios measured on
zircon fractions from the granites and silicic dike
rocks of the Suomenniemi complex were not
considered by Vaasjoki et al. (1991), we have re-
examined the previous data in search of a better
conception of the emplacement age of the granites
of the Suomenniemi batholith and the quartz-
feldspar porphyry dikes that cut both the granites
of the batholith and the surrounding Svecofennian
bedrock (Fig. 1). We also present new U-Pb zircon
secondary ion microprobe data for one of the granite
samples analyzed previously by Vaasjoki et al.
(1991), as the conventional zircon fractions from
this granite showed abnormally large scatter and,
consequently, increased uncertainty on the
emplacement age and potential consanguinity of the
granite series of the batholith. Using the U-Pb
emplacement age of the granites of the Suomen-
niemi batholith, we apply the refined decay constant
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Fig. 1. Geological map of the northern flank of the Wiborg rapakivi granite batholith, showing the lithologic assemblages
of two prominent ~1.64 Ga satellite complexes, Suomenniemi and Ahvenisto. Two gabbroic intrusions, Vuohijarvi and
Lovasjarvi, presumably related to the diabase dikes, are also shown. For the Suomenniemi complex, location of the
isotope samples discussed in this paper are shown as delivered in the station legend. Inset shows map area relative to
the Wiborg batholith (dashed line indicates the extent of the batholith under the Gulf of Finland). Modified from Lehijarvi
& Tyrvainen (1969), Alviola (1981), Siivola (1987), Ramd (1991, 1999) and Ramo et al. (2014).

of ¥Rb (Nebel et al., 2011; Rotenberg et al., 2012)
to re-evaluate the whole-rock Rb-Sr data set

than the quartz-feldspar porphyry dikes (1634+4

Ma); (2) the granite series of the Suomenniemi

published earlier on the granite series of the Suomen-
niemi batholith (Rimé, 1991). It appears that (1)
the main granite series of the Suomenniemi complex

crystallized at 1644+4 Ma and is measurably older

batholith cooled quite rapidly to the closure
temperature of the Rb-Sr isotope system; (3) the
measured whole-rock Rb-Sr compositions date the
emplacement of the granites within the analytical
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error involved, and thus (4) the implied *Sr/*Sr, of
0.7062+0.0024 is a valid (yet only fair) estimate of
the initial isotope composition of the granite series.
This initial ratio points to a major Paleoproterozoic
(Svecofennian) crustal component in the magma
from which the granite series crystallized.

2.Thesilicic rocks of the
Suomenniemi complex

The silicic rocks of the Suomenniemi complex
include the main granite series and cross-cutting
quartz-feldspar porphyry dikes (Rimd, 1991). The
granites constitute the Suomenniemi batholith and
comprise four main types (Fig. 1): hornblende
granite, biotite-hornblende granite, biotite granite,
and topaz granite. In addition, there is a volumetrically
minor intrusive phase of hornblende-clinopyroxene-

fayalite granite that is chilled against and sharply
cuts the hornblende granite and biotite-hornblende
granite in the eastern and southern parts of the
batholith (Fig. 1). The four main granite types form
a fractionation series that ranges from Iow—SiOz,
metaluminous granites to high-SiO,, marginally
peraluminous granites, as illustrated in a SiO, vs.
A/CNK diagram in Fig. 2. The highly fractionated
topaz granites in the northern part of the batholith
have, in general, anomalously high Rb and low Sr
and Zr concentrations (Table 1; see also Haapala,
1997 and Lukkari, 2007). At a given SiO, value,
the A/CNK value of the granites varies considerably,
probably because of the effect of feldspar
accumulation, with high relative Al (high A/CNK)
characterizing the samples with excess feldspar (Fig.
2). Rimd (1991) related this granite fractionation
series to a common, relatively silicic parental magma.
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Fig. 2. Si0, vs. A/CNK (molar AlL,0,/(Ca0+Na,0+K,0)) diagram showing the composition of the granites and quartz-
feldspar porphyry dikes of the Suomenniemi complex. A/CNK=1 is the divide between metaluminous and peraluminous
fields. The ten samples analyzed for whole-rock Rb-Sr isotopes from the main granite series of the Suomenniemi batholith

are indicated. Data from Ramo (1991).
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Overall, the main granite series of the Suomenniemi
batholith probably reflects fractionation of mainly
alkali feldspar, quartz, and a subaluminous mafic
silicate from a primary magma that straddled the
metaluminosity-peraluminosity boundary (cf. Zen,
1986; Shearer & Robinson, 1988; Emslie, 1991).
At the current level of exposure, the most primitive
(low-SiO,) granites are found in the southern and
the most evolved (high-S§iO,) granites in the
northern part of the batholith (Fig. 1). According
to Vaasjoki et al. (1991), the marginal parts of the
Wiborg batholith just south of the Suomenniemi
batholith are ~10 Ma younger than the granites of
the Suomenniemi batholith (see also Rimo et al.,
2014), and the distribution of the granite types in
the Suomenniemi batholith has been claimed to
result from north-northeast tilting caused by the
emplacement of the Wiborg batholith (Rims,
1991).

About 40 quartz-feldspar porphyry dikes are
found within the Suomenniemi complex (Rimg,
1991). The dikes strike northwest, dip vertically,
are commonly 5 to 20 m wide, and cut both the
granites of the Suomenniemi batholith and its
Svecofennian country rocks (Fig. 1). The dikes have
often dark and aphanitic (originally sometimes
vitrophyric) margins, whereas the central parts are
composed of alkali feldspar (rounded or angular),
quartz, and plagioclase phenocrysts and poly-
crystalline hornblende-biotite aggregates after mafic
pyrogenic phenocrysts, set in a fine- to medium-
grained granitic groundmass. These dikes obviously
represent a later phase of rapakivi granite magma
emplaced along a prevailing northwest-striking
fracture system, subsequent to the solidification of
the granites of the Suomenniemi batholith (Rima,
1991). Geochemically, the quartz-feldspar porphyry
dikes conform to the granites of the batholith
(Fig. 2).

3. Previous work
and samples

Previously, seven samples have been collected for
U-Pb zircon chronology from the granites and
quartz-feldspar porphyry dikes of the Suomenniemi

complex. Kouvo (1958) sampled two quartz-
feldspar porphyry dikes — the Mentula dike (sample
A0021), which cuts the Svecofennian bedrock just
north of the Suomenniemi batholith, and the Kiesilid
dike (sample A0099), which cuts the main granite
series in the central part of the batholith (Fig. 1).
Vaasjoki etal. (1991) collected three granite samples,
the Pohjalampi hornblende granite (sample A1043)
from the southeastern flank of the batholith, the
Uiruvuori biotite granite (sample A1042) from the
northern part of the batholith, and the Sikolampi
hornblende-clinopyroxene-fayalite granite (A1130)
from the main body of fayalite-bearing granites; the
hornblende-clinopyroxene-fayalite granite cuts the
hornblende granites and biotite-hornblende granites
of the main granite series of the batholith (Fig. 1).
The results of the U-Pb zircon analyses on these
three granite samples were summarized by Vaasjoki
et al. (1991), with upper intercept ages being
1639+6 Ma, 1641+2 Ma, and 1636+23 Ma for the
Uiruvuori, Pohjalampi, and Sikolampi granites,
respectively. Vaasjoki et al. (1991) also collected two
additional samples from quartz-feldspar porphyry
dikes, the Nikkari dike (sample A1100), which is
strongly chilled against the hornblende granite in
the southeastern part of the Suomenniemi batholith,
and the Viitalampi dike (sample A1163), which cuts
the Svecofennian metamorphic country rocks north-
west of the batholith (Fig. 1) and is commingled
with diabase. Vaasjoki et al. (1991) reported upper
intercept ages of 1638+32 Ma, 1639+9 Ma, 1635+2
Ma, and 1636+16 Ma for the Mentula, Kiesili,
Nikkari, and Viitalampi dikes, respectively.

Of the main granite series of the Suomenniemi
batholith, ten samples have been analyzed for whole-
rock Rb-Sr isotopes (Fig. 1; Rimé, 1999). In addition
to the Uiruvuori and Pohjalampi granites analyzed
for zircon U-Pb, these comprise four hornblende
granites (OTR-87-202.1, MKT-86-195.2, A1044,
A1945), a biotite-hornblende granite (A1045), a
biotite granite (A1042) and two topaz granites
(MKT-87-664.2, A1097). The ten samples fall on
an errorchron with a MSWD (Mean Square of
Weighted Deviates) of 28.9 and *St/*Sr, of 0.7066+
0.0023. An age of 1600+7 Ma can be calculated
from the least-squares fit of the Rb-Sr isotope data
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on these samples (cf. Rimé, 1999). This age has a
relatively small error and is younger than the ~1640-
Ma U-Pb zircon age reported by Vaasjoki et al.
(1991).

4. Analytical methods
and procedures

4.1. Discordia fits of
U-Pb zircon data points

For age determination based on zircon, conventional
multi-grain isotope dilution U-Pb data are fitted to
a least-squares regression line in the *’Pb/*°U vs.
206Pb/*38U space (York, 1969). The reliability of the
fit is dependent on the precision and accuracy of
the analytical results on individual multi-grain
zircon fractions and may vary depending on, among
other things, the relative amount of radiogenic Pb
in the analyzed fraction and resultant variation in
the precision of the mass spectrometric
measurements of U and Pb. The data elaborations
by Vaasjoki et al. (1991) were based on age
calculations utilizing a common error of the Pb/U
ratios (+0.8%) as well as a common error correlation
of the 2”Pb/**U and 2°°Pb/**U ratios (90%). We
have recalculated the U-Pb zircon data on the four
granites of the Suomenniemi batholith using
external errors and error correlations of individual
zircon fractions in search of enhanced accuracy.

4.2. U-Pb zircon secondary
ion mass spectrometry

For in situ U-Pb work on the Uiruvuori biotite
granite, zircon grains from heavy mineral fractions,
recovered from sample A1042 by Vaasjoki et al.
(1991), were examined for internal textures using
SEM imaging. Grains chosen for secondary ion
microprobe analysis were mounted in epoxy,
polished, and coated with gold. The ion microprobe
U-Pb analyses were performed using the Nordic
Cameca IMS 1270 instrument at the Swedish
Museum of Natural History, Stockholm, Sweden
(the NordSIM facility). The used spot diameter for

the 4nA primary negative O, ion beam was ~30
pm and oxygen flooding in the sample chamber was
used to increase the transmission of lead. The mass
resolution (M/AM) was approximately 5600 (10%).
Four counting blocks, each including three cycles
of the Zr, Pb, Th, and U species were measured for
every spot. The raw data were calibrated against the
zircon standard 91500 (Wiedenbeck et al., 1995)
and corrected for background (204.2) and age-
related common lead (Stacey and Kramers, 1975).
A detailed description of the analytical process is
available in Whitehouse et al. (1999) (see also
Whitehouse & Kamber, 2005). Plotting of the U-
Pb isotope data, fitting of the discordia lines, and
calculating the ages were performed using the
Isoplot/Ex 3 program (Ludwig, 2003). Age errors
were calculated at 26 and decay constants errors
were ignored. Data-point error ellipses in the
illustrations are shown at 26.

4.3. Recalculation of whole-rock
Rb-Sr isotopic ages

Applicability of isotopic dating methods based on
radioactive decay is profoundly dependent on the
accuracy of the decay constant A. For the Rb-Sr
isotope method, the value of A, (1.42*10"'a™) was
approved by the Subcommission on Geochronology
of the International Union of Geological Sciences
in 1977 (Steiger and Jiger, 1977). This value of A,
has not, however, gained universal acceptance (e.g.,
Begemann et al., 2001). New endeavors set out to
improve the accurracy of A include direct - counting
(Kossert, 2003), geological age-comparison using a
better-known decay system (Amelin & Zaitsev,
2002; Nebel et al., 2011), and ingrowth measurement
of daughter isotope accumulated over a laboratory
time scale (e.g., Rotenberg et al., 2012). These studies
indicate that compared to the value recommended
by Steiger and Jiger (1977), the potentially more
applicable value of A, is lower, probably on the order
of 1.393*10"a! to 1.397*10"'a’". This difference
implies that the Rb-Sr isochron ages determined
using the approved A, are 1-2% too young. We
have reassessed the whole-rock Rb-Sr isotope data
on the main granite series of the Suomenniemi
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Fig. 3. U-Pb concordia diagrams showing the results of zircon U-Pb analyses (Table A1) on three granites and four quartz-
feldspar porphyry dikes from the Suomenniemi complex. a) Multi-grain data on the Uiruvuori (A1042) biotite granite. b)
Secondary ion microprobe data on the Uiruvuori granite. c) Multi-grain data on the Pohjalampi hornblende granite (A1043).
d) Multi-grain data on the Sikolampi hornblende-clinopyroxene-fayalite granite (A1130). e) & f) Multi-grain data on the
Mentula (A0021), Kiesila (AO099), Nikkari (A1100), and Viitalampi (A1163) quartz-feldspar porphyry dikes; in f), varying
colors are used for illustrative purposes. Error ellipses are at the 2c level.
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206Pb ages average at 1639.5+£6.0 Ma (MSWD=
0.20) and the five spots with the lowest *’Pb/
26Pb ages at 1620.9+4.4 Ma (MSWD=0.64).
The older age conforms to the multigrain upper
intercept age of 1640+9 Ma of the sample (Fig.
3a). The two average ages, 1640+6 Ma and
1621+5 Ma, are probably real. A possible reason
for this age difference is illustrated by the
analyzed grain number n752-36 (Table 2) that
has a bright interior and dull outer part (Fig.
4a). The heavy central part of the crystal is very
high in U (1964 ppm) and the light rim is
relatively low in U (970 ppm). *’Pb/**Pb dates
of the center and rim are 1617+4 Ma and
1637+5 Ma, respectively. The dates of the center
and rim parts of this zircon crystal are thus
probably measurably different. This may reflect
the possibility that the U-Pb system of high-U
zircon domains may remain open longer than
that of low-U domains and hence register a
younger age. The scatter shown by the multi-
grain fractions (Fig. 3a) could thus be, at least
in part, a reflection of highly varying U content
in various structural parts of zircon grains.
Further causes for the heterogeneity are, however,
implied by the pervasively zoned, more homo-
geneous crystal n752-40 (Fig. 4b), which has a

young rim with a *’Pb/**Pb age of 16168 Ma
and a relatively low U value (764 ppm).

Fig. 4. Back-scattered electron images of two of the five zircon
crystals analyzed by secondary-ion microprobe for their U-Pb
isotope composition from the Uiruvuori biotite granite (A1042).
a) Grain n752-36 that shows distinct central and rim parts with

grossly different U values. b) Grain n752-40 that shows
pervasive magmatic zoning. The white circles indicate secondary

ion microprobe spot locations (Table 2).

images bright) central parts and light (in BSE images
dull) overgrowths (Fig. 4a) and those grains that
are pervasively zoned and light (in BSE images dull)
(Fig. 4b). The concordia age of the five concordant
U-Pb compositions (Fig 3b; see also Table 2) is
1624+7 Ma (MSWD=0.63).

Figure 5 shows a weighted average *’Pb/**Pb
age plot of the eight spots analyzed from the
Uiruvuori biotite granite. For all eight spots, the
weighted average *’Pb/**Pb age is 1627+9 Ma
(MSWD=3.9). The data, however, seem to fall into
two groups: the three spots with the highest *’Pb/

Pohjalampi hornblende
granite (A1043)

For the Pohjalampi hornblende granite on the
southeastern flank of the Suomenniemi batholith
(Fig. 1), Vaasjoki et al. (1991) published the five-
fraction upper and lower intercept ages of 16412
Maand 1919 Ma, respectively. Point-specific errors
on Pb/U considered, these five zircon fractions
define a good discordia (MSWD=0.17) with
concordia intercepts at 1644+4 Maand 196+£19 Ma
(Fig. 3c). The *"’Pb/***Pb age of the most concordant
fraction A1043-E is 1638+6 Ma. The upper
intercept age, 1644+4 Ma, is considered an accurate
and relatively precise estimate of the crystallization
age of the Pohjalampi hornblende granite.
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Fig. 5. Weighted average plot of the 2°"Pb/2°°Pb ages of the eight zircon spots (Table 2, as labeled) analyzed by secondary
ion microprobe for their U-Pb isotope composition from the Uiruvuori biotite granite (A1042). Combined, the eight samples
deliver a weighted average age of 1627+9 Ma (MSWD=3.9). The data can be divided into two groups with distinct

weighted average ages (164016 Ma and 1621+5 Ma).

Sikolampi hornblende-clinopyroxene-
fayalite granite (A1130)

The six multi-grain fractions (Table A1) originally
analyzed by Vaasjoki et al. (1991) from the
Sikolampi hornblende-clinopyroxene-fayalite
granite, which cuts a hornblende granite in the
eastern part of the batholith (Fig. 1), fall into two
categories: three rather concordant and three
strongly discordant fractions (Table Al; Fig. 3d).
Altogether, they define a discordia with intercepts
of 1639+13 Ma and 88+31 Ma and a MSWD of
17 (Fig. 3c). The three most concordant fractions
(C through E) define an upper intercept age of
1632+5 Ma with a MSWD of 0.03. In view of the

1634+5 Ma *’Pb/**Pb age of the most concordant
fraction A1130-C, the three-point upper intercept
age is probably a valid estimate of the crystallization
age of the Sikolampi granite.

Quartz-feldspar porphyry dikes
(A0021, A0099, A1100,A1163)

The U-Pb data reported for the 15 multi-grain
fractions from these four dikes by Vaasjoki et al.
(1991) (Table A1) define a discordia with intercepts
at 1641+9 Ma and 16829 Ma and a MSWD of
5.6 (Table A1; Fig. 3e). Nine of the most concordant
fractions imply intercept ages of 1634+4 Ma and -
39+91 Ma (Fig. 3f). This nine-point fit is internally
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consistent (MSWD=1.10) and compatible with the
27Pb/*Pb ages of the three most concordant
fractions (A0021-B 1633+4 Ma; A1100-A 1635+11
Ma; A1163-A 1638+10 Ma) and is considered as
the emplacement age of these dikes. Two of the dikes
(A0099, A1100) cut the main granite series of the
batholith and two of them (A0021, A1163) the
Svecofennian country rocks of the batholith and
probably belong to a single magmatic event that
clearly postdates the emplacement of the main
granite series of the Suomenniemi batholith.

5.2. Rb-Sr whole-rock
geochronology

Rb-Sr isotopic data for the ten granite samples from
the Suomenniemi batholith from Rimé (1999) are
shown in Table 1 and in a Rb-Sr isochron diagram
in Fig. 6. In the ¥Rb/*Sr vs. ¥St/*Sr space, the
data define a regression line with the following
equation:

87Sr/%Sr = (0.022980+0.000097)
*87Rb/%Sr + 0.7066+0.0023 (1)
The time t associated with this fit, representing the
time in the past when the analyzed samples had the
same, initial, 8Sr/*¢Sr ratio, is calculated from the
slope m (in this case 0.022980+0.000097) and A,
(the decay constant of ¥Rb) of the line as

t = In(m+ 1)/7\.87 (2)

Using the official A, value of Steiger & Jiger (1977),
an age of 1600+7 Ma is calculated from this fit.
Using the A values of Nebel et al. (2011) and
Rotenberg et al. (2012), ages of 1631+7 Ma and
1627+7 Ma are calculated. If the highest Rb/Sr
sample (the Pohjalampi topaz granite A1097; Table
1) is omitted, the slope and the ordinate intercept
become 0.023077+0.000141 and 0.7062+0.0024,
respectively, with an MSWD of 31. The ages
calculated from equation (2) for this fit are 1604£10
Ma (A, from Steiger & Jiger, 1977), 1635+10 Ma

S I : | ] | . |
Errorchron parameters (., from Steiger & Jager, 1977) A1097,
10 -\ n=10: 1600.0 + 6.7 Ma; 0.7066 + 0.0023; MSWD=29
n=9: 1603.7 + 9.7 Ma; 0.7062 + 0.0024; MSWD=31
8 L
| S
) 6
8
=
.ED
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~—MKT-86-195.2
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Fig. 6. 8Rb/%Sr vs. &Sr/%eSr diagram for the main granite series of the Suomenniemi batholith (Table 1; R&mo, 1991).
Two least-squares fits (n = 10, all samples included; n = 9, topaz granite A1097 omitted) are shown with ages calculated
using the A, value of Steiger & Jager (1977). Color coding of data points as in Fig. 2.
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(A, from Nebel etal., 2011), and 1630+10 Ma (A,,
from Rotenberg et al., 2012). Both fits have
relatively large MSWD values (29 for n = 10, 31 for
n =9) and are thus errorchrons. They may, however,
be used for geochronologic considerations as
demonstrated below.

6. Discussion

6.1. Crystallization age of the
granites of the Suomenniemi
batholith

The main granite series of the Suomenniemi
batholith is geochemically relatively coherent (Fig.
2) and probably represents a fractionation array from
a common parental magma (cf. Rimg, 1991). Field
observations (Rimé, 1991) are compatible with this
hypothesis as no discordant contacts between the
four main granite types of the batholith have been
observed. The U-Pb zircon geochronological data
elaborated in this paper comply with this view. The
multi-grain upper intercept ages of samples A1043
and A1042 (1644+4 Ma and 1640+9 Ma,
respectively) are probably realistic estimates of the
crystallization ages of the hornblende granites and
biotite granites of the Suomenniemi batholith,
considering the external errors involved (Fig. 7). The
weighted average *’Pb/?*Pb zircon age of the older
secondary ion microprobe spots from biotite granite
A1042 (1640+6 Ma) is compatible with this, as are
the ?’Pb/**Pb ages of the most concordant multi-
grain fractions from samples A1042 and A1043
(1636+7 Ma and 1638+6 Ma, respectively: Fig. 3a,
b). Overall, and because of the fact that 2*’Pb/?*°Pb
ages of discordant multi-grain zircon fractions
represent minimum ages on concordia, the most
probable crystallization ages of the hornblende and
biotite granites of the Suomenniemi batholith are
set by the isotope-dilution upper intercept and
secondary ion weighted average ages (Fig. 7). These
data imply that the biotite granites and the
hornblende granites are probably coeval and that
the Pohjalampi hornblende granite, 16444 Ma,
dates the main hornblende granite-biotite granite

volume of the Suomenniemi batholith. The
established fractionation series model (Rimao, 1991;
see also Fig. 2) of the main granite series further
allows the biotite-hornblende granites and the topaz
granites to be coeval with the hornblende granites
and biotite granites.

The perception thus emerges that the main
granite series of the Suomenniemi batholith was
crystallized from a single parental magma at 1644+4
Ma. The single sample analyzed from the hornblende-
clinopyroxene-fayalite granite, which cuts and is
chilled against the hornblende granite of the
batholith in the eastern part of it (Fig. 1), has a
three-fraction multi-grain zircon upper intercept of
1632+5 Ma and the *’Pb/?*Pb age of the least
discordant fraction is 1635+5 Ma (Figs. 3d, 7). Thus
the Sikolampi hornblende-clinopyroxene-fayalite
granite may be measurably younger than the main
granite series of the Suomenniemi batholith with a
possible non-magmatic window of < 1 m.y. (1640-
1639 Ma; Fig. 7). Our elaborations imply that there
indeed were two different granitic intrusion events
that built up the Suomenniemi batholith, as
previously proposed (Rimo, 1991).

6.2. Crystallization age of the
quartz-feldspar porphyry dikes of
the Suomenniemi complex

The quartz-feldspar porphyry dikes that cut sharply
across the main granite series of the Suomenniemi
batholith and the Svecofennian metamorphic count-
ry rocks (medium- to high-grade migmatitic
granites) form a geochemically mutually comparable
series of silicic rocks with the granites, ranging from
low-SiO,, metaluminous to high-SiOz, marginally
peraluminous compositions (Fig. 2). The multi-
grain U-Pb zircon data on the four dikes from both
lithologic environments are consistent (Fig. 3e, f)
and the pooled age of the four samples define a
robust upper intercept age of 1634+4 Ma (Fig. 7).
It is probable that the dikes represent a single,
volumetrically minor and shallow intrusion event
of renewed rapakivi magmatism after the
emplacement of the granites of the Suomenniemi
batholith. Upon emplacement of the silicic dikes,
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the granites of the batholith and its host rocks had
been cooled and the bedrock around the batholith
eroded to a certain extent during an interval of at
least two m.y. (1640-1638 Ma). The age of the silicic
dikes overlaps with that of the hornblende-
clinopyroxene-fayalite granites (Fig. 7) and, in the

absence of field observations of their mutual
relations, their relative age cannot be fixed. They
do, however, represent different environments of
emplacement with the quart-feldspar porphyry dikes
more clearly postdating the crystallization of the
batholith, having been emplaced at a time of more
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U-Pb zircon on the Pohja-
lampi hornblende granite

U-Pb zircon on the Sikolampi
hornblende-clinopyroxene-

fayalite granite

Rb-Sr whole-rock errorchron
ages of the main granite
series of the batholith

U-Pb zircon on the
Uiruvuori biotite
granite

Pooled U-Pb zircon on four
quartz-feldspar porphyry dikes

Fig. 7. Comparison of zircon ages of hornblende granite, biotite granite, hornblende-clinopyroxene granite, and quartz-
feldspar porphyry dikes and whole-rock Rb-Sr ages of the main granite series of the Suomenniemi complex. Nine-point
errorchron (topaz granite A1097 excluded) Rb-Sr ages, calculated using three different values of A, (1.42*10"a",
Steiger & Jager, 1977; 1.393*10*'a*, Nebel et al., 2011; 1.3968*10*a*, Rotenberg et al., 2012), are shown.
Abbreviations: Ul - upper intercept age, 7/6 - multi-grain 2°’Pb/2°Pb age, W.A. - weighted average 2°’Pb/?°°Pb age,
SIMS - secondary ion mass spectrometry. Preferred crystallization age (1644+4 Ma) of the main granite series of the

Suomenniemi batholith is indicated.
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advanced cooling of the main granite series of the

batholith.

6.3. Rb-Sr systematics of
the main granite series of the
Suomenniemi batholith

Adopting the U-Pb zircon emplacement age of the
main granite series of the Suomenniemi batholith,
1644+4 Ma, as a piercing point, the Rb-Sr isotope
systematics of the granite series may be further
scrutinized. In general, Precambrian plutonic
igneous systems are prone to have experienced
subsolidus events that have affected the magmatic
Rb/Sr of the rock suites because of the mobility of
Rb and Sr (e.g., Welin et al., 1983). Often the Rb-
Sr ratio is increased relative to the magmatic value
and the time-corrected initial ¥ Sr/**Sr may thus be
unrealistically low. The overcorrection involved may
result in calculated “initial” Sr/*¢Sr even below the
presumed initial St/%Sr of the Solar System at 4.56
Ga (¥Sr/*Sr, = 0.69899 of the Basaltic Achondrite
Best Initial, BABI; cf. Faure, 2001).

We calculated the individual ¥Sr/*Sr values for
the ten samples originally analyzed from the
Suomenniemi granite series by Rimé (1991) using
varying 7‘37 values (the official Steiger & Jiger, 1977,
value and the lower values published by Nebel et
al., 2011 and Rotenberg et al., 2012). The results
are shown in Table 1 and in Fig. 8. Some interesting
and probably significant patters emerge. Initial ratios
calculated using the Steiger & Jiger (1977) value
have a very large spread and are grossly deviant from
reality because of overcorrection, except for the
values calculated for the hornblende granites and
biotite-hornblende granite (Fig. 8a, left segment).
The topaz granites MKT-87-664.2 and A1097, with
the highest present-day ¥Rb/*Sr (135 and 442) and
87Sr/%Sr (3.820 and 10.849), are profusely
overcorrected with ¥Sr/*Sr. of 0.634+0.016 and
0.399+0.053, respectively (Table 1). For the two
lower values of 7”37’ more internally consistent ¥Sr/
$Sr, are calculated (Fig. 8a, center and right
segments), most of which are nearly compatible
within the 26 external error (Table 1; Fig. 8a, b).

In the light of these calculations, it seems that,

using the new A values of Nebel et al. (2011) and
Rotenberg et al. (2012), all except the very high-
Rb/Sr topaz granite A1097 yield single-sample ¥ St/
88r, values that are relatively compatible with each
other (data points within the green dashed fields in
Fig. 8a). Hence, the least-squares fit of these nine
samples (Fig. 6) may represent a good approximation
of the true magmatic equilibrium that governed the
crystallization of the main granite series. Thus, the
nine-point Rb-Sr errorchron (Fig. 6) may be
considered a temporally significant proxy of the
solidification stage of the batholith. The relatively
large uncertainty involved (MSWD=31), reflected
in the shift of the single-sample initial values in Fig.
8, may stem from slight subsolidus modification of
Rb/Sr and a slight variation in the initial Sr isotope
composition of the granite magma. The effect of
the latter was probably minimal, however, because
of the homogeneous initial whole-rock Nd and
feldspar Pb isotope compositions measured for the
main granite series (Rimo, 1991). Errorchron ages
of the nine samples (OTR-87-202.1 through MKT-
87-664.2 in Table 1), calculated using the new, lower
values of k87 (Nebel et al., 2011; Rotenberg et al.,
2012), are shown in Fig. 7. These ages are, within
the experimental errors involved, compatible with
the U-Pb age of the main granite series of the
Suomenniemi batholith. Therefore, also the initial
87Sr/gGSri value calculated from the nine-point fit,
0.7062+0.0024 (Fig. 6), is most probably a

magmatic value.

7. Concluding remarks

The Suomenniemi batholith is an important
example of A-type granite intrusions with a
substantial lithologic variation, which can most
likely be ascribed to precipitation from a common
parental magma. Our geochronological modeling
shows that both the zircon U-Pb and whole-rock
Rb-Sr systems of the granites of the main granite
series of the batholith register crystallization of the
granite series at ~1640 Ma. We prefer the 1644+4
Ma U-Pb zircon age of the main series hornblende
granite from the southeastern fringe of the batholith
as the best estimate of the emplacement age of the
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batholith. The whole-rock Rb-Sr system of the main
granite series records, within the external error, the
same event and yields a magmatic ¥ Sr/*Sr value of
0.7062+0.0024 for the batholith. Compared to the
initial value (87Sr/86Sri0.707410.0004; Neymark et
al., 1994; see also Rimo et al., 1996) of the 1.56
Ga Salmi rapakivi granite batholith in Russian Ka-

relia, showing much more lower €, the initial ratio

of the Suomenniemi batholith is,N ;It face value, less
radiogenic. Compared to the initial values of the
rapakivi granite-associated Subjotnian diabase dikes
in southern Finland (¥ Sr/*Sr, in the 0.7036+0.0003
range; Suominen, 1991), the initial ratio of the
Suomenniemi batholith is more radiogenic. These
initial Sr isotope compositions probably reflect
major material contributions from a mixed Archean-
Paleoproterozoic crustal source (Salmi granites),
Paleoproterozoic crust (Suomenniemi granites), and
Paleoproterozoic sub-
continental mantle (Finnish diabase dikes). The
preservation of the magmatic Rb-Sr isotope system
in the granites of the Suomenniemi batholith implies
that the batholith cooled relatively rapidly to the
closure temperature of the Rb-Sr system in the
granites (probably governed by closure of mica in
the high-Rb/Sr samples at ~300-400°C — cf.
Dodson, 1973; Del Moro et al., 1982). This must
have occurred before the major thermal
perturbations that were associated with the
emplacement of the Wiborg batholith proper at -
1630 Ma (cf. Rimo et al., 2014; Heinonen et al.,
2015). The 1644 Ma Suomenniemi batholith is thus
identified as one of the earliest (perhaps the earliest)
silicic epizonal plutonic precursors that paved the
way for the magmatic culmination of the
southeastern Finland rapakivi granite system 10-15
m.y. later.
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