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Abstract

Modern techniques for detrital mineral provenance were applied to sediment core 
96/12-1pc from the Lomonosov Ridge in the central Arctic Ocean. The techniques 
include quantitative clay mineralogy analysis combined with determination of Nd, 
Pb, and Sr isotopes from clay fraction. The clay mineral assemblage and the isotope 
signatures depict distinct changes during the Marine Isotope Stage (MIS) 4-3 transition 
corresponding to the Middle Weichselian deglaciation. This transition is characterised 
by a homogenous, 48 cm thick, dark grey, silty clay layer with a distinctive IRD 
concentration, forming a prominent marker bed for the central Arctic Ocean sediments. 
The elevated smectite and kaolinite contents in the transitional interval are possible 
weathering products of the Siberian basaltic rocks, such as the Putorana Plateau, 
feeding the shelves of the Kara Sea and the western Laptev Sea. The Nd and Sr isotope 
values are compatible with input from the basaltic rocks and fall within the isotopic 
range of sediments from these shelves. The abrupt changes in the Nd, Pb and Sr 
isotopic data from the distinct grey layer attributed to the MIS 4-3 transition likely mark  
a pronounced deglaciation event. An increase in coarse debris in the grey layer indicates 
a change in the sedimentation regime with a strong iceberg rafting component. This 
change may also be related to a sudden release of meltwater from a large ice-dammed 
lake in the northern Siberia.
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1.  Introduction
The disintegration of the Middle Weichselian 
Eurasian ice sheet and the discharge of a large 
proglacial lake during deglaciation event in the 
Marine Isotope Stage (MIS) 4-3 transition have 
been studied during the past decades (Mangerud 
et al. 2001, 2004; Krinner et al. 2004; Spielhagen 
et al. 2004; Svendsen et al. 2004). A distinct grey 
sediment layer with abundant ice-rafted debris 
(IRD) has been found in multiple cores from the 
eastern and central Arctic Ocean (Jakobsson et 
al. 2000, 2001; Vogt et al. 2001; Spielhagen et al. 
2004; Dong et al. 2022). According to the existing 
stratigraphy, this layer was deposited during the 
transition from glacial (MIS 4) to interglacial (MIS 
3) conditions and forming a prominent Middle 
Weichselian marker bed for the Arctic Ocean 
sediments (Jakobsson et al. 2000, 2001; Vogt et al. 
2001; Spielhagen et al. 2004; Löwemark et al. 2008). 
Variations in deep-sea sediments can show changes 
in the transport pathways related to the history of 
circulation, sea ice, and icebergs (cf. Wahsner et 
al. 1999). The current understanding is that under 
interglacial conditions, such as the present-day, 
sediments are delivered to the central Arctic Ocean 
primarily by sea-ice drift from the Eurasian and 
the American Arctic margins, while during glacial/
deglacial intervals, material was largely provided 
by icebergs and meltwater (e.g., Darby 2003, 2014; 
Polyak et al. 2010; Darby et al. 2011). According 
to Clark & Hanson (1983), glacial ice is primarily 
responsible for the transportation of coarser 
sediment, and sea ice may be the major source of 
finer  sediment  in  the  central  Arctic  Ocean.

The clay mineralogy of the central Arctic Ocean 
sediments has been widely used to identify sediment 
source areas (Stein et al. 1994; Wahsner et al. 1999; 
Kalinenko 2001; Viscosi-Shirley et al. 2003; 
Vogt & Knies 2008; Strand et al. 2008; Krylov 
et al. 2008, 2014). The radiogenic neodymium 
(Nd), lead (Pb), and strontium (Sr) isotopes have 
been applied in sediment provenance tracing and 
transport mechanism reconstructions in the Arctic 
region (Tütken et al. 2002; Fagel et al. 2014; Li et 

al. 2023). This present research offers information 
on how the clay mineral content and the isotope 
signatures of the central Arctic Ocean sediments 
correspond to the deglaciation event during the 
MIS 4-3 transition. In this study, we investigated 
the clay mineralogy and the Nd, Pb, and Sr isotopes 
from the Late Pleistocene sediment record of core  
96/12-1pc from the Lomonosov Ridge. The core 
consists of alternating clay to silty clay sediments 
with prominent intervals of silt to fine sand size 
material. The clay fraction is characteristic for 
meltwater pulses related to deglaciation events 
and can be transported in varying degree by ocean 
currents over long distances into the deep ocean 
basins (cf. Wahsner et al. 1999). Clay-size fraction 
was selected for the present study due to its high 
availability in the study material and suitability 
to both clay mineral and isotope analyses with 
minimal grain size effects on the isotope systematics 
(e.g., Tütken et al. 2002; Fagel et al. 2014). Com-
bining our results with published data, we evaluated 
the provenances and transportation of these detrital 
sediments in the central Arctic Ocean. The results 
from this study can be applied in further evaluation 
of  the  Arctic  ice  sheet  and  circulation  history.

2.  Geological background

The Lomonosov Ridge is interpreted as a continen-
tal fragment/crust that extends 1700 km from 
the north of Greenland, across the North Pole, to 
the central Siberian continental shelf, separating 
the Arctic Ocean into the Eurasian Basin and the 
Amerasian Basin (Jokat & Ickrath 2015) (Fig. 1). 
The Arctic Ocean is a relatively enclosed ocean 
as it has limited connections to the Atlantic and 
Pacific Oceans via the Fram Strait and Bering Strait, 
respectively. There are two major wind-driven 
surface-water circulation systems in the Arctic 
Ocean: the Beaufort Gyre flowing clockwise in 
the Amerasian Basin, and the Transpolar Drift in 
the Eurasian Basin flowing towards the Fram Strait 
(Schoster et al. 2000; Adler et al. 2009) (Fig. 1). 
These currents transport surface water masses with 
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sea-ice and/or icebergs along with the entrained 
terrigenous sediments. The Eurasian side provides 
minerals, including e.g., amphibole, pyroxene and 
illite, while the Amerasian side mainly provides 
dolomite and kaolinite (Krylov et al. 2008; 

Kaparulina et al. 2016). Lower Nd and Pb ratios 
derive from the North American margin, and higher 
Nd and Pb ratios from the Eurasian margin (Fagel 
et al. 2014; Li et al. 2023). The Sr ratios vary within 
the  Eurasian  margin  sources  (Li  et  al.  2023).

Figure 1. Map of the Arctic Ocean with the location of core 96/12-1pc on the Lomonosov Ridge (modified from 
Jakobsson et al. 2008). Two major surface-water circulations, the Beaufort Gyre (BG) and the Transpolar Drift (TPD) are 
indicated by grey arrows (adapted from AMAP 1998).
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3.  Materials and methods

3.1. Sediment core

A 722 cm long piston core 96/12-1pc was recovered 
from the water depth of 1003 m during the Arctic 
Ocean-96 expedition (AO96) from the crest of the 
Lomonosov Ridge (144°46’22’’E, 87°05’51’’N; 
Fig. 1) (Jakobsson et al. 2000, 2001). No obvious 
indications of erosion of the sea-bottom were 
observed at the core site. The core location in 
the interaction area of sea-ice transported by the 
Transpolar Drift and the Beaufort Gyre (Fig. 1) 
is suitable for recording changes in sedimentary 
inputs from both the Eurasian and North American 
margin. The lithostratigraphic description of 
the core is based on Jakobsson et al. (2000, 2001). 
From 722 to 193 cm below sea floor (bsf ), the 
core consists of medium to dark brown clays 
characterised by overall high content of manganese, 
common bioturbation, and fine particle size.  
A coarser-grained, light grey-brown, sandy clay 
between 193 and 186 cmbsf grades to an olive to 
light brown clay at 186 to 163 cmbsf (Fig. 2). The 
latter unit is overlain with a sharp contact by a 
homogenous, dark grey, 48 cm thick, silty clay 
layer between 163 and 115 cmbsf. The uppermost 
115 cmbsf of the core consist of light brown to light 
yellowish-brown, mottled clayey silt with faint 
horizontal banding.

An age model based on nannofossil biostrati-
graphy and Mn cyclicity has been established by 
Jakobsson et al. (2000) for the upper 220 cmbsf of 
the core (Fig. 2). According to this approximative 
age  model,  the  core  extends  back  to  ca.  860 ka.

3.2. Clay fraction analyses

3.2.1. Sample preparation

Oriented clay slides were prepared from 3 g of sedi-
ment from 47 samples collected at 2–3 cm intervals 
between 93 and 206 cmbsf (Fig. 2). Distilled 
water was added to the samples and stirred with 

a glass rod until they went into suspension. This 
mixture was centrifuged for 1 minute (1000 rpm)
to separate the clay in suspension from the coarser-
grained sediment (> 2 µm). The suspension was 
then transferred to a clean centrifuge tube and 
centrifuged for 15 minutes (1000 rpm) to settle 
the clay fraction to the bottom of the tube. The 
liquid was carefully decanted away, and the clay 
samples were smeared onto glass slides for the XRD 
analyses, while the remaining clay material was 
retained for further analyses. Three different slides 
were made from each sample; air dried (normal), 
heated, and ethylene glycol treated. The samples 
were placed in a drying oven at 60 °C for 2 hours, 
and the heated samples were then placed in the oven 
at 550 °C for additional 2 hours, which caused the 
kaolinite structure to collapse (Hardy & Tucker 
1998). Ethylene glycol treated samples were put in 
a desiccator that was placed in the oven overnight at 
60 °C. The ethylene glycol causes smectite to expand 
its basal spacing from 10 Å to about 17 Å, which 
makes it recognisable in a diffractogram (Velde 
1992).

3.2.2. XRD analysis

X-ray diffraction (XRD) was carried out at the 
Centre for Material Analysis (CMA), University of 
Oulu, Finland. The diffractograms were recorded 
by a Siemens D 5000 diffractometer with a fixed 
divergence slit (FDS), and copper radiation (40 kV, 
40 mA) at angles ranging from 2° to 32° 2θ (0.02° 
2θ per second). XRD was performed on oriented 
clay samples according to Hardy & Tucker (1988) 
and Moore & Reynolds (1997). MacDiff freeware 
version 4.2.5 was used to quantify the clay minerals, 
which were subsequently used to calculate 
percentages using weighting factors (Biscaye 1965). 
Peak correction with quartz, smoothing of counts 
and subtraction of the baseline were done before the 
analysis. Since no internal standards were available, 
the precise accuracy of this procedure is not known, 
but the quantitative analyses justify interpretations 
of  fluctuations  around  ± 2 %.
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3.2.3. Nd, Pb, and Sr isotopic analysis

A total of 17 clay fraction samples were used for 
the measurements of Nd, Pb, and Sr isotope 
compositions (Fig. 2). Sample preparation and 
analyses were carried out at the Geological Survey 
of Finland, Espoo. Approximately 200 mg of a 
clay sample was leached with 0.1N HCl in an 
ultrasonic bath to remove any authigenic material, 
such as biogenic carbonates and hydrated iron 
oxides. The samples were then carefully washed 
several times with distilled water. During the 
leaching process, the samples lost up to 70 % of 
their weight. Therefore, more sample material 
was used for leaching to get ~100 mg sample for 
digestion. The residues of the leached samples were 
digested with concentrated HF+HNO3+HClO4 
(3:1:1) in Parr bombs for seven days at 200 °C. The 
fluorides were evaporated twice with a small amount 

of concentrated HNO3. To get a clear solution, the 
samples in Parr bombs were further digested in an 
oven for 96 hours/200°C in 2.5 ml of 6.2 N HCl. 
For the Pb, Sr and Nd concentration analyses, ~1/10 
weighed  splits  were  separated  and  evaporated.

For isotope ratio measurements, Pb was 
isolated using an AG1-X8 anion exchange resin in 
HBr environment, and all the washing acids were 
collected for Sr and Nd purification purposes. Then, 
Sr and REEs were eluted by using an AG50-X8 
cation exchange resin in a HCl environment. From 
the REE fraction, Nd was eluted using HDEHP-
coated (hexyl di-ethyl hydrogen phosphate) Teflon 
powder as the ion exchange medium in a dilute HCl 
environment (Richard et al. 1976). For isotope ratio 
measurements, the sample amounts needed were 
determined from the measured concentrations and 
the sediment amount that finally went through 
the elemental elution processes. Deionised water 

Figure 2. Results of the analyses performed on the clay fraction from core 96/12-1pc: relative content of clay minerals 
(smectite, illite, kaolinite, and chlorite); εNd, 207Pb/206Pb, and 87Sr/86Sr. Distribution of the > 63 µm fraction content 
adapted from Jakobsson et al. (2001) is plotted next to the digital core image adapted from Jakobsson et al. (2000). 
The grey layer (115-163 cmbsf) is shown with dashed lines. Position of Marine Isotope Stages (MIS) is adapted from 
Jakobsson et al. (2001).



40 Alatarvas, Immonen and Strand 
 

with a resistivity of ≥18.2 MΩ·cm was used in the 
digestion and elemental separation processes, and 
all the used acids were either single or double-
distilled (sub-boiling), depending on the initial acid 
purity class. Only Teflon vials were used during the 
digestion and column separation.

The Nd isotope analysis was performed using 
VG Sector 54 thermal ionisation mass spectro-
meter (TIMS). Nd isotope ratios were measured 
using Ta-Re triple filaments in a dynamic mode 
and 143Nd/144Nd ratios were normalised to 
146Nd/144Nd=0.7219. Repeated analyses of the La 
Jolla Nd standard during the measurements gave 
143Nd/144Nd of 0.511858 ± 0.000015 (mean and 
external 2σ error of 12 measurements). The re-
ported external error in the 143Nd/144Nd is 0.005 %. 
The εNd (T= 0 Ma) was calculated using the 
current chondritic (CHUR) value of 143Nd/144Nd 
= 0.51264 (DePaolo & Wasserburg 1976). The 
maximum error in the εNd values is ± 0.5 ε-units. 
The total procedural blank for Nd has usually been 
< 0.3 ng.

Sr and Pb isotope analyses were carried out 
using a standard liquid sample introduction system 
involving a 50µl meinhart nebuliser, a DSN, and 
a Multi-Collector Inductively Coupled Plasma 
Mass Spectrometer (Nu InstrumentsΤΜ) at low 
mass resolution (Δm/m = 400). The isotopic 
measurements were performed in a static mode 
using five faraday detectors and 10 blocks of 12 
integrations of approximately 5 s. The Sr samples 
were diluted down to 80 ppb Sr. The standard 
reference material NBS987, diluted down to  
50 ppb Sr, was also used to monitor the precision 
and accuracy of the measurements at the beginning 
and the end of every session. The obtained average 
of 0.71027 ± 0.00002 (n=6, 1sd) for the 87Sr/86Sr 
ratio was close to the NBS987 standard 87Sr/86Sr = 
0.71034 ± 0.00026. The Pb samples were diluted to 
40 ppb Pb. To correct for the mass discrimination 
effect produced during the analysis, the data were 
bracketed with the NBS981 standards giving 
average values of 206Pb/204Pb (16.93258 ± 0.00276), 
207Pb/204Pb (15.48618 ± 0.00257), and 208Pb/204Pb 

(36.68144 ± 0.00852) (n=4, 1sd), which are close 
to the recommended values (Yuan et al. 2016). 
The obtained averages of 0.91458 ± 0.00001 (n=4, 
2sd) for the 207Pb/206Pb and 2.16631 ± 0.00015 
(n=4, 2sd) for the 208Pb/206Pb ratios were close to 
the NBS981 standards 0.91464 ± 0.00033 and  
2.1681 ± 0.0008,  respectively.

4.  Results

4.1. Clay minerals 

The clay minerals of the studied samples are 
presented by the relative content of smectite, 
illite, kaolinite, and chlorite (Fig. 2). The detailed 
results are presented in the Supplementary Table 1 
(Electronic Appendix A). From ~206 cmbsf to the 
lowermost part of the grey layer (163 cmbsf ) the 
smectite content is < 20 %. Th ere is a notable 
increasing trend in smectite content upward 
the grey layer with values up to 32 %. In the 
upper part of the grey layer, from ~126 to 115 
cmbsf, the smectite values show a decreasing trend 
with the lowest number being 13 %. Above the grey 
layer (upward from 115 cmbsf ), the smectite values 
increase up to 25 %. Illite content is relatively high 
(up to 56 %) below the grey layer and upward from 
163 cmbsf the values decrease within the layer, with 
the lowest value being 25 %. Above the grey layer 
the illite values show an increasing trend with values 
up to 41 %. Kaolinite content fluctuates between 
206 and 163 cmbsf, having the lowest values  
(7–12 %) just below the grey layer. The increased 
kaolinite content (up to 24 %) upward from  
163 cmbsf corresponds to the lithological change 
into the grey layer interval. There is a slight decrease 
in kaolinite content above the grey layer (upward 
from 115 cmbsf ). Chlorite content show notable 
variations (7–27 %) below the grey layer and within 
the layer (163–115 cmbsf ) the values vary between 
20 and 30 %. Above the grey layer the chlorite 
values  have  an  average  of  22 %.
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4.2.  Isotopic composition

The detailed results from the Nd, Pb and Sr isotope 
analyses are presented in the Supplementary Table 
2 (Electronic Appendix B). All the measured 
isotopic values show distinct excursions from 
their general trends between 163 and 115 cmbsf, 
corresponding to the grey sediment layer (Fig. 2). 
The samples below the grey sediment layer (from 
229 to 163 cmbsf ), show decreasing trends in the 
examined isotopic values (Fig. 2). The εNd values 
vary between -8.8 and -11.4, 207Pb/206Pb values 
between 0.8281 and 0.8338, and 87Sr/86Sr values 
between 0.7201 and 0.7498. In the grey layer 
sediments (163–115 cmbsf ), the examined isotopic 
values vary highly after an abrupt increase to their 
maximum values. The εNd values range from -9.8 
to -8.7, 207Pb/206Pb values from 0.8315 to 0.8399, 
and 87Sr/86Sr values from 0.7230 to 0.7849. In the 
uppermost sediment samples between 115 and 
43 cmbsf, the isotopic values settle approximately 
to the same levels as the sediments below the grey 
layer. The εNd values vary between -11.2 and -9.7, 
207Pb/206Pb values between 0.8304 and 0.8340, and 
87Sr/86Sr values between 0.7226 and 0.7406. The 
average isotopic values for the sediments below, in, 
and  above  the  grey  layer  are  presented  in  Table  1.

5.  Discussion 

The Eurasian source areas may have provided 
an ample amount of material during the MIS 
4-3 transition. This enhanced sedimentation is 
marked by a rapid shift in core 96/12-1pc lithology 
to a homogeneous, dark grey, relatively coarse-
grained sediment layer (Fig. 2), which correlates 

with various cores from the eastern and central 
Arctic Ocean (e.g., Vogt et al. 2001; Spielhagen 
et al. 2004; Dong et al. 2022). The grey layer was 
deposited during the MIS 4-3 transition (Jakobsson 
et al. 2000, 2001; Vogt et al. 2001; Spielhagen et al. 
2004; Löwemark et al. 2008), and the sharp lower 
contact of the layer indicates an abrupt change in 
the sedimentation regime. The significant change 
in the environmental conditions within the 
transitional interval is reflected in the mineralogical 
composition of the sediments from core 96/12-1pc 
(e.g., Löwemark et al. 2008; Strand & Immonen 
2010;  Kaparulina  et  al.  2016) (Fig. 2).

The source areas and transportation for this 
MIS 4-3 transition sediment are discussed here 
based on the quantitative analysis of clay mineral 
assemblages and isotope compositions. Smectite is 
helpful for clay mineral provenance studies in the 
Arctic Ocean due to its distinct source areas. The 
main modern source region of smectite for the 
eastern/central Arctic Ocean is the shelves of the 
Kara Sea and the western Laptev Sea (Wahsner 
et al. 1999; Vogt & Knies 2008). The weathered 
smectite-rich material from the Siberian trap basalts 
(Putorana Plateau and the Siberian Platform) is 
transported by the Yenisey River into the Kara Sea, 
and by the Anabar and Khatanga rivers into the 
Laptev Sea (e.g., Rossak et al. 1999; Schoster et al. 
2000). Higher smectite content is associated with 
interglacial conditions (Strand et al. 2008), and 
the notable increasing trend of smectite content in 
the grey layer (163–115 cmbsf ) of core 96/12-1pc 
(Fig. 2) may indicate deglacial sediment transport 
from the retreating Eurasian ice sheet. The abrupt 
transition to higher kaolinite content occurs in the 
lower part of the grey layer (~160 cmbsf ) and an 
excursion at the MIS 4 top (~130 cmbsf ) (Fig. 2). 

Depth (cmbsf) εNd (x̄) 207Pb/206Pb (x̄) 87Sr/86Sr (x̄)

43-115 -10.5 0.8322 0.7313

115-163 -9.2 0.8342 0.7376
163-229 -10.3 0.8316 0.7276

Table 1. The average isotopic values of the studied sediment intervals.
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According to Vogt (1997), high kaolinite content 
in the central Arctic Ocean sediments suggests 
origin from the Kara Sea and the western Laptev 
Sea. Kaolinite is a very resistant mineral, and its 
occurrence in the polar regions may be derived from 
the reworking of older, kaolinite-bearing sediments 
(Darby 1975; Chamley 1989; Hambrey et al. 1991). 
The fluctuating kaolinite content in the studied 
sediments (Fig. 2) can be related to these reworked 
sediments and to the intensity of erosion at the 
continental source areas. According to Wahsner et 
al. (1999), increased illite content is characteristic 
for sediments of the eastern Laptev Sea and the East 
Siberian Sea. The higher illite content in the core 
96/12-1pc sediment column indicates that the illite-
rich IRD was derived from glacial sources. However, 
the decreasing illite content in the grey layer at 163–
115 cmbsf (Fig. 2) implies availability of other clay 
minerals during deglaciation. In comparison, the 
chlorite content shows a slight increase in the grey 
layer (Fig. 2) and according to Dong et al. (2017) 
the elevated chlorite content is characteristic for 
interglacial environments. Wahsner et al. (1999) 

showed that chlorite distribution is relatively 
uniform in the Arctic Ocean surface sediments, and 
as reported by Rossak et al. (1999), a slightly higher 
chlorite component is delivered to the Laptev Sea by 
the  Lena  and  Yana  rivers.

The obtained sediment isotopic compositions of 
radiogenic Nd, Pb and Sr from core 96/12-1pc can 
be compared with the values of the circum-Arctic 
magmatic and metamorphic outcrops, as well as 
the rivers draining into the Arctic Ocean (Fig. 3). 
The Eurasian shelf sediments, which represent a 
mixed material drained from the vast Siberian 
hinterland, generally have a narrow range of Nd and 
Sr isotope composition (e.g., Tütken et.al. 2002; 
Maccali et al. 2018). The studied sediments in core  
96/12-1pc overall have εNd values ranging from 
-8.7 to -11.4 and 87Sr/86Sr ratios between 0.719 and 
0.785 (Figs. 2, 3). These values are mostly similar 
to the isotopic composition of the sediments 
from the Kara Sea (Tütken et al. 2002; Maccali et 
al. 2013) and western Laptev Sea (Eisenhauer et al. 
1999) (Fig. 3). These shelf areas contain weathering 
products from the Siberian flood basalts (such as 

Figure 3. a) εNd vs 87Sr/86Sr diagram representing core 96/12-1pc data (white and grey circles). Grey circles indicate 
samples from the grey layer. The isotopic signatures of regional sources are from Siperian Traps (Lightfoot et al. 1993), 
Aldan Shield (Davies et al. 2006), Eurasian shelf (Eisenhauer et al. 1999, Tütken et al. 2002, Maccali et al. 2018), and 
Mackenzie River (Dong et al. 2020). b) Diagram of εNd vs 207Pb/206Pb representing core 96/12-1pc data (white and 
grey circles). Grey circles indicate samples from the grey layer. Values are plotted against the proposed endmembers 
for 207Pb/206Pb and εNd mixing in the Arctic Ocean (Fagel et al. 2014). The isotopic signatures of regional sources are 
from Fagel et al. (2014) and references therein.
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the Putorana Plateau), and thus, have generally 
higher εNd values (around -9.0) and lower 87Sr/86Sr 
ratios in comparison to the eastern Laptev Sea and 
the East Siberian Sea fed mostly by crustal sources 
(e.g., Li et al. 2023). The Kara Sea and the western 
Laptev Sea source is evident especially in the grey 
layer sediments, where the radiogenic isotope 
composition average has clearly higher values of 
εNd (the highest -8.3) compared to the sediments 
below and above the grey layer (Table 1). The high 
87Sr/86Sr ratios (>0.785) may be explained by the 
components derived from primitive intrusive rocks 
and granitoids of the Archean basement in the 
Siberian hinterland (Czamanske et al. 2000). As a 
provenance indicator, volcanic rocks are the main 
carriers of Nd; however, igneous rocks are normally 
enriched in Pb (Tütken et al. 2002). The Pb isotope 
compositions in several samples from the grey layer 
(163–115 cmbsf ) have high radiogenic 207Pb/206Pb 
values of 0.836–0.840 (Figs. 2, 3), thus supporting 
the inference of sedimentary contributions from the 
Eurasian margin.

According to the reconstruction by Mangerud 
et al. (2004), the Putorana Plateau and the southern 
Kara Sea shelf were situated within the boundaries 
of an ice dammed lake that could have produced 
the abrupt flooding event and the voluminous 
discharge of sediments from these provenances. 
It is assumed that sediments from the Eurasian 
margin sources, such as the shelves of the Kara 
and western Laptev Sea, are mainly transported by 
ice via the Transpolar Drift and deposited in the 
Eurasian Basin (Spielhagen et al. 2004; Strand et 
al. 2008; Strand & Immonen 2010). The results 
from this study support that the sediments in 
the grey layer of core 96/12-1pc can be related to 
the disintegration of the Middle Weichselian ice 
sheet and the discharge of the large proglacial lake 
during deglaciation in the MIS 4-3 transition. The 
sediments deposited on the Lomonosov Ridge 
could have been transported during this glacial/
interglacial change by icebergs, sea ice and in 
suspension.

6.  Conclusions
Clay mineralogy analysis combined with the 
determination of Nd, Pb, and Sr isotopes in clay 
fraction were used for the interpretation of source 
areas and transport mechanisms of sediments 
from the Lomonosov Ridge in the central 
Arctic Ocean. The distinct changes in sediment 
characteristics within the grey, relatively coarse-
grained sedimentary layer deposited during the MIS 
4-3 transition are represented by the clay mineral 
assemblages and isotopic compositions. The high 
smectite and kaolinite content in the grey layer 
are probably related to weathering products of the 
Siberian basaltic rocks and indicate origin from the 
shelves of the Kara Sea and the western Laptev Sea. 
The Nd and Sr isotope values fall mostly within the 
ranges typical for these shelf areas. We conclude 
that the Nd, Pb and Sr isotopic compositions of 
sediments in the grey layer mark a pronounced 
deglacial impact during the MIS 4-3 transition 
at the end of the Middle Weichselian glaciation. 
An abrupt change in the sedimentation regime 
indicated by provenance and the deposition of a 
coarse IRD-rich grey layer, might be related to the 
discharge of an ice dammed lake in the northern 
Siberia from where voluminous sediment load have 
been transported to the Arctic Ocean by icebergs, 
sea ice and in suspension.

Supplementary Data

Electronic Appendices are available via Bulletin of 
Geological Society of Finland web page.
Electronic Appendix A: The detailed results from 
the clay mineralogy analysis
Electronic Appendix B: Nd, Pb and Sr isotope 
analyses
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