A 3D-model of the Uppsala esker

E. JIRNER¹, D. MCCONNACHIE², P-O. JOHANSSON³, H. DJURBERG⁴, P. MCCLEAF⁵, A. HUMMEL⁵ AND S. Ahlgren⁵

 $^1 \, The \ Geological \ Survey \ of \ Sweden, \ Box \ 670, \ 751 \ 28, \ Uppsala, \ SWEDEN \ (*correspondence: eva.jirner@sgu.se)$

 ^{2}WSP , $^{3}Artesia$ Grundvattenkonsult, $^{4}Akvanovum$ $^{5}Uppsala$ Vatten

Introduction

In 2013 Uppsala Vatten initiated a strategic study of the Uppsala Esker in order to investigate the esker's continued viability as the main water supply for the City of Uppsala. This study includes the development of a digital database and a 3-D mathematical groundwater model. As a basis for the mathematical modelling, a conceptual hydrogeological model was developed of the relevant stretch of the esker and its catchment (c. 300 km²), see Figure 1.

The geological strata and its geometry are key components of the conceptual model which must to be transferred to the mathematical model. This was accomplished by constructing a 3-D geological model using the *Subsurface Viewer MX* software, with subsequent *ArcGIS* transformation in order to create continuous layers for input to the *Feflow* mathematical groundwater model.

DevelopMent of the geological model

The digital data used for the geological modelling include c. 1200 borehole logs, published geological maps and sections, geophysical profiles, topographical maps and a digital terrain model (resampled to 25 m resolution). All data were simplified to a general vertical sequence of seven classes: bedrock, till, glaciofluvial sediment, silt and clay, outwash sand, organic soil and fill.

Borehole data were connected in almost 200 cross-sections, taking into account all the geological background information, including geophysical profiles. After review and approval by hydrogeological experts, the sections were used to define 3-D geological units based on the simplified stratigraphic model. The units and the sections are modelled in the software to create a block model. In the final model, "synthetic" crosssections can be generated anywhere and the top and base of each unit can be exported into grids.

Acknowledgements

The presented work has been performed as a cooperation between Uppsala Vatten and Swedish Geological Survey within the framework of Uppsala Vatten's project "Funktionsanalys Uppsalaåsen".