U-Pb ages and Nd isotope characteristics of the lateorogenic, migmatizing microcline granites in southwestern Finland

Matti Kurhila¹, Matti Vaasjoki²†, Irmeli Mänttäri², Tapani Rämö¹, Mikko Nironen²

¹ Department of Geology, P.O. Box 64, FI-00014 University of Helsinki, Finland
² Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland

Abstract

U-Pb ages and whole-rock Nd isotope data have been obtained from the Paleoproterozoic lateorogenic migmatizing microcline granites of southwestern Finland. Isotope dilution and ion microprobe U-Pb data on zircons and monazites show that the age spectrum of these granites is at least 1.85-1.82 Ga. Commonly, zircons and monazites record the same ages. The age variation in the Veikkola granite area is of the order of 25 Ma and indicates that this seemingly homogeneous granite consists of two separate intrusions. The zircons of the lateorogenic granites are pervasively altered and conventional U-Pb results are commonly discordant. The ion microprobe studies reveal that the granites contain very few inherited zircons with preserved original U-Pb isotope ratios, with the exception of the Oripää granite. Initial ε_{Nd} values, mostly in the range of -0.5 to -1.0, imply a moderate input of older crustal material into most of the lateorogenic granites. A shift from more juvenile to less radiogenic Nd isotope composition is observed from north to south, and the variation pattern of ε_{Nd} values of the lateorogenic granites is thus similar to that of the surrounding synorogenic granitoid rocks.

Keywords: granites, Svecofennian orogeny, absolute age, U/Pb, zircon, monazite, Sm/Nd, Paleoproterozoic, southwestern Finland

I. Introduction

J.J. Sederholm proposed in the early 20th century a fourfold classification for the Paleoproterozoic intrusive rocks of the Finnish Svecofennian (Sederholm, 1926). His first group consisted of granodioritic-tonalitic bodies, which intruded the Svecofennian supracrustal rocks. Both rock types were intensely metamorphosed by the microcline granites of the second group, and all these rocks were cut by largely undeformed granite stocks which formed the third group. On the basis of the contact relationships between a third group granite and the rapakivi granites in the archipelago of southwesternmost Finland, Sederholm (1926) concluded that the rapakivi granites were even younger and formed a fourth group of intrusive rocks. This classification is still colloquially used in field work within the Finnish Precambrian, although the current scientific nomenclature was cre-
I. Introduction

J.J. Sederholm proposed in the early 20th century a fourfold classification for the Paleoproterozoic intrusive rocks of the Finnish Svecofennian (Sederholm, 1926). His first group consisted of granodioritic-tonalitic bodies, which intruded the Svecofennian supracrustal rocks. Both rock types were intensely metamorphosed by the microcline granites of the second group, and all these rocks were cut by largely undeformed granite stocks which formed the third group. On the basis of the contact relationships between a third group granite and the rapakivi granites in the archipelago of southwesternmost Finland, Sederholm (1926) concluded that the rapakivi granites were even younger and formed a fourth group of intrusive rocks. This classification is still colloquially used in field work within the Finnish Precambrian, although the current scientific nomenclature was created by Simonen (1971), who named the first three granite groups syn-, late- and postorogenic, and regarded the rapakivi granites as anorogenic. A further development occurred during the late 1980’s, when it was recognized that, while orogenic activity within the arc complex of western Finland (Fig. 1) had been extremely rapid, there were significant age differences between the intrusive rocks in southern Finland (e.g. Vaasjoki & Sakko, 1988; Rämö et al., 2001).

This paper deals with the lateorogenic migmatizing microcline granites of southern Finland that comprise Sederholm’s original second group. We present new U-Pb mineral data (isotope dilution and ion microprobe) and whole-rock Nd isotope analyses on the lateorogenic granites in southwestern Finland.

2. Concepts of the evolution of the Svecofennian orogeny in Finland

The classification of plutonic rocks into syn-, late- and postorogenic by Simonen (1971) was associated with the classic geosynclinal orogenic concept. Several models for the Svecofennian orogeny based on plate tectonics have been presented subsequently. The latest published plate tectonic models are rather complex, involving several arc complexes (older nuclei and marginal arcs) that accreted to the Archean craton (Lahtinen, 1994; Nironen, 1997; Lahtinen et al., 2003). In line with these models, the Svecofennian crust is divided into three areas with different geological, geochronological and isotopic signatures (Korsman et al., 1997): the primitive arc complex in central Finland, the arc complex of western Finland and the arc complex of southern Finland (Fig. 1).

The main phase of tectonism seems to have been coeval within the arc complex of southern Finland. Early gabbros register ages of 1.89 Ga throughout the area (Hopgood et al., 1983; Patchett & Kouvo, 1986) and synorogenic granitoids yield zircon U-Pb ages...
from 1.89 to 1.87 Ga (Vaasjoki, 1996 and references therein). As shown by Huhma (1986), the synorogenic granitoids mainly consist of mantle derived (juvenile) material, which is also the case with the granites of central Finland (Rämö et al., 2001; Elliott, 2003). It is thus apparent that the culmination of the Svecofennian orogeny was roughly simultaneous everywhere in southern and central Finland. However, Väisänen et al. (2002) considered that the age of nearly 1.9 Ga of some granodiorites (of Sederholm’s 1st group) in southwestern Finland reflects the time of initial arc-related magmatism. According to Väisänen et al. (2002), the synorogenic stage occurred somewhat later, i.e., 1.88–1.86 Ga ago and the peak of the metamorphism in SW Finland reached granulite facies at 1824±5 Ma, dating also the D3 folding that deforms the lateorogenic microcline granites in that area (cf. Ehlers et al., 1993).

Although not many of the lateorogenic granites have been dated so far, it is evident that, in cases where multigrain zircon and/or monazite U-Pb data are available, the zircon results are heterogeneous with mean $^{207} \text{Pb}/^{206} \text{Pb}$ ages of about 1.84 Ga and monazites are consistently ~1.83 Ga old (Suominen, 1991). Vaasjoki (1996) noted the absence of igneous activity at 1.86–1.85 Ga and suggested that the Svecofennian orogeny may have terminated already by 1.87 Ga, and that the subsequent igneous activity in (the arc complex of) southern Finland might represent a separate tectono-thermal event. Indeed, recent models on the Svecofennian evolution (e.g. Nironen, 1997; Korsman et al., 1999; Väisänen, 2002) suggest that the juvenile crustal components were assembled by ~1.87 Ga and that the emplacement of the migmatizing microcline granites was related either to transpressional intraplate tectonism (Ehlers et al., 1993) or extensional collapse after the cessation of the main compressive phase (Korja & Heikkinen, 1995; Korsman et al., 1999).

3. Sample description

3.1. Geologic setting

On the 1:1 000 000 bedrock map of Finland (Korsman et al., 1997), large bodies of lateorogenic, 1.84–1.82 Ga granites are indicated. The map picture is partly deceiving, as these rocks are not necessarily uniformly granitoid in composition. In places, they may contain up to 50% of nebulitic remnants and even xenoliths of supracrustal rocks and synorogenic intrusions, principally granodiorites and tonalites. The lateorogenic granites, although clearly intrusive in character, generally have no well-defined contacts with their country rocks. Rather, there is a gradation from granites through migmatites to metasedimentary rocks and synorogenic intrusive rocks. Nor do these granites form batholiths *sensu stricto*. It is generally thought that they are relatively thin undulating sheets within the country rocks (e.g. Fig. 7 in Ehlers et al., 1993), and their emplacement is attributed to mid-crustal levels (Selonen et al., 1996).

The late Svecofennian microcline granites are predominantly S-type, and thus, for example, their relatively high Al content is manifested by the ubiquitous occurrence of garnet. Other major minerals are microcline, quartz, plagioclase, biotite and cordierite. In many cases, the potassium feldspar phenocrysts give the granites a porphyritic texture, although even-grained types also exist. Petrographically, the lateorogenic granites are a heterogeneous group. The grain size varies from medium-grained to pegmatitic, and the color varies significantly, often in an outcrop scale, due to irregular distribution of dark minerals, mainly biotite. The accessory mineral parageneses are not consistent either, but in most cases muscovite, apatite, chlorite, monazite, zircon, and rutile or anatase are found.

3.2. Sample material and previous geochronological data

We have limited our sampling to purely granitic varieties of the aforementioned large granite bodies. Our targets (Fig. 1) were: (1) the *Perniö* granite south and southeast of Turku; (2) the *Tenhola* granite south of the Perniö granite; (3) the *Hanko* (Hangö) granite in the archipelago off the southwestern coast; (4) the *Evitskog* granite area north and northwest of Espoo; (5) the *Eviskog* granite south of the Veikkola area;
and (6) the Oripää granite stock and the synorogenic Pöytä granodiorite about 50–60 km north-northeast of Turku.

(1) The Perniö granite covers the largest area of the studied granite bodies and is represented by two samples, A1690 and A1691. Both are medium- to coarse-grained, slightly porphyritic microcline granites. A slight magmatic orientation is present in both samples, but generally the rocks are rather massive. The principal difference between the two samples is in the habit of garnet. In sample A1691 garnet is abundant, euhedral and looks igneous in most places, whereas in A1690 garnet is scarce and most of it is heavily altered, appearing restitic in character. In a previous study, Suominen (1991) reported combined zircon and monazite regression ages of 1829±14 Ma for two samples close to the location of A1690 and 1840±8 Ma for a sample close to the location of A1691. The monazites in both cases are practically concordant \(^{207}\text{Pb} / ^{206}\text{Pb}\) ages 1831±6 Ma and 1836±3 Ma, respectively and thus determine the upper intercepts (Suominen, 1991).

(2) The Tenhola granite is an incipiently migmatized microcline granite with scattered nebulitic inclusions of gneissose composition. Our sample A1692 is taken from a purely granitic part of the rock. The rock is medium- to coarse-grained, and in places there is a vague undulating orientation. Pervasive iron oxide pigmentation gives the rock a reddish color. The microcline is commonly microperthitic and occasionally displays granophytic texture with quartz. Large xenomorphic garnet grains are present in minor amounts.

(3) The Hanko granite is a medium-grained, somewhat heterogeneous microcline granite with nebulitic structures resembling those of the Tenhola granite. Garnet is practically absent and the rock is richer in opaque minerals than the other samples of this study. The sample A876 is from the southernmost tip of the Finnish mainland (Fig. 1). The rock is relatively fresh and unaltered compared to our other dated samples. A previous conventional U-Pb study of the Hanko granite reveals rather discordant and heterogeneous zircon populations, which define a poor discordia line with an upper intercept age of 1842±34 Ma, while two nearly concordant monazite fractions yield ages of 1829±9 Ma (A875) and 1822±6 Ma (A876) (Suominen, 1991).

(4) The Veikkola granite is a light-colored microcline granite that has varying grain size. It is layered, yet there is no pervasive textural orientation. The layering is due to irregular pegmatitic zones that have gradational contacts to the medium-grained host rock. The layering is gently dipping, with varying strike. In places, euhedral garnets form bands along the lighter, coarse-grained strata, but generally the garnet is randomly dispersed. Our dated samples A1695, A1718, and A1733 are taken from the medium-grained parts of the granite.

(5) The Evitskog granite is a pink, coarse-grained and slightly porphyritic microcline granite. The minerals are largely altered and distributed inhomogeneously. Biotite and chlorite form irregular darker patches. Muscovite is also present in minor amounts. The rock has some altered remnants of garnet with chlorite as the most common alteration product. Zircon and monazite are particularly abundant in this granite and other accessory minerals (e.g. apatite and carbonate) are also present. Our sampling site (A1694 in Fig. 1) lies close to the contact of an intermediate supracrustal rock.

(6) The Oripää granite lies in the western part of the arc complex of southern Finland ~60 km north-northeast of Turku (Fig. 1). It is cross-cutting rather than migmatizing in character and thus it is somewhat different from the other granites studied in this paper. The Oripää stock is quite small (~20 km²) and is surrounded by other migmatites and hornblende gneisses and is adjacent to the synorogenic Pöytä granodiorite. The granite stock is heterogeneous with a very leucocratic, stromatic and coarse to pegmatitic appearance and abundant inclusions of gneissose rocks. Isotope dilution U-Pb data on zircons (Nironen, 1999) yield two overlapping upper intercept ages of 1850±27 and 1860±41 Ma from red and pale brown zircons, respectively. A concordant monazite yields an age of 1794±10 Ma (op. cit.).
4. Analytical methods

4.1. U-Pb dating

From each sample, an average of 15 kg of rock was crushed in a jaw mill and ground in a roller mill to <0.3 mm grain size. The heavy minerals were concentrated with a shaking table and the magnetic minerals were removed with a Carpro® induced roll magnetic separator. The zircons and monazites were separated according to a method described by Vaasjoki et al. (1991).

For multigrain ID-TIMS U-Pb dating, the decomposition of minerals and the extraction of U and Pb followed generally the procedure described by Krogh (1973, 1982). 235U–208Pb spike was used for zircon and 235U–206Pb spike for monazite. The spiked and unspiked isotope ratios were measured with a VG Sector 54 multicollector mass spectrometer. Mass fractionation correction of 0.15±0.05% per a.m.u. for Pb was estimated on the basis of repeated measurements of the SRM981 standard during the analyses. U-Pb age calculations were done using the PbDat program (Ludwig, 1991).

For ion microprobe dating, a range of zircon crystals representative of the whole sample was selected under the microscope and mounted in epoxy, polished and gold-coated. The ion microprobe analyses were performed using the Cameca IMS 1270 secondary ion mass spectrometer of the NORDSIM laboratory at the Swedish Museum of Natural History, Stockholm. The procedure was essentially similar to that described in detail by Whitehouse et al. (1997, 1999). The data were calibrated against a zircon standard (91500; Wiedenbeck et al., 1995) and corrected for modern common Pb (T=0; Stacey & Kramers, 1975).

The fitting of the discordia lines and calculation of the intercept and concordia ages were done using the Isoplot/Ex program (Ludwig, 2001). In the concordia diagrams, all error ellipses and bars are plotted at 2σ level, and the decay constant errors are ignored. Calculated age errors are at 2σ level, unless otherwise indicated.

4.2. Whole-rock Sm-Nd studies

About 150 mg of each sample powder, pulverized in a ring mill with a carbon steel head, was spiked with a 149Sm–150Nd tracer and subsequently dissolved in a Teflon bomb at 180 °C in HF-HNO$_3$. The extraction of Sm and Nd and the measurement procedure of their isotopic ratios followed that presented by Rämiö et al. (2001).

5. Results

5.1. Multigrain ID-TIMS U-Pb chronology

Multigrain analyses (each fraction comprising of at least some tens of crystals, in most cases over 100) on zircons and monazites were carried out on the Tenhola granite (sample A1692), the Evitskog granite (A1694), and the Veikkola granite (A1695, A1718 and A1733). The U-Pb analytical data are summarized in Table 1 and the results are presented in concordia diagrams in Fig. 2. For the analyses, only zircons with magmatic appearance were selected from the heavy mineral separates.

The zircons from the Peräniö granite (A1690 and A1691) were chosen for ion microprobe study (cf. section 5.2) and only monazites of these samples were dated with the ID-TIMS method. Both monazite results are concordant and the ages, 1829±3 and 1831±3 Ma, are identical within experimental error (Fig. 2a).

The zircons from the Tenhola granite (A1692) are euhedral, prismatic, and colorless to light brown. Only homogeneous, prismatic zircons from the density fraction above 4.2 g/cm3 were selected. The U-Pb isotopic ratios of the analyzed four zircon fractions define a linear trend (MSWD=2.3) with an upper intercept age of 1835±13 Ma (Fig. 2b). The concordant age for monazite is 1831±3 Ma.

The zircons from the Evitskog granite (A1694) are generally small, elongate and prismatic. They can be divided into nearly colorless and light brown subpopulations. The U-Pb results of two fractions from each...
Table 1. TIMS U-Pb age data on zircons and monazites from migmatizing microcline granites in southwestern Finland.

<table>
<thead>
<tr>
<th>Sample information</th>
<th>Analysed mineral and fraction</th>
<th>weight/mg</th>
<th>U ppm</th>
<th>Pb 206Pb/204Pb measured</th>
<th>Pb 208Pb/206Pb radiogenic</th>
<th>Pb 207Pb/206Pb</th>
<th>Pb 207Pb/205Pb</th>
<th>Pb 207Pb/235U (%)</th>
<th>Pb 207Pb/238U (%)</th>
<th>Pb 206Pb/238U (%)</th>
<th>APPARENT AGES / Ma ±2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERNIÖ GRANITE</td>
<td>A1690 Kistolanperä</td>
<td>MON d>4.3 g/cm³ Ø<75μm, equidimensional, yellow, abr. 20min</td>
<td>0.34</td>
<td>2209</td>
<td>6369</td>
<td>14700</td>
<td>8.67</td>
<td>0.329</td>
<td>0.65</td>
<td>5.074</td>
<td>0.65</td>
</tr>
<tr>
<td>A1691 Pungböle</td>
<td>MON d>4.3 g/cm³ Ø<75μm, elongated, yellow, variable grain size, abr. 20min</td>
<td>0.27</td>
<td>4582</td>
<td>6113</td>
<td>7725</td>
<td>3.56</td>
<td>0.329</td>
<td>0.65</td>
<td>5.084</td>
<td>0.65</td>
<td>0.112</td>
</tr>
<tr>
<td>TENHOLA GRANITE</td>
<td>A1692 Tenhola</td>
<td>A) Zr d=4.2 g/cm³ Ø<75μm, prismatic, brown, translucent, l/w=3-5, abr. 12h</td>
<td>0.12</td>
<td>924</td>
<td>296</td>
<td>2677</td>
<td>0.11</td>
<td>0.298</td>
<td>0.65</td>
<td>4.591</td>
<td>0.65</td>
</tr>
<tr>
<td>B) Zr d=4.2 g/cm³ Ø<75μm, prismatic, light brown, translucent-transparent, l/w=3-5, abr. 2h</td>
<td>0.18</td>
<td>829</td>
<td>245</td>
<td>1605</td>
<td>0.11</td>
<td>0.272</td>
<td>0.65</td>
<td>4.174</td>
<td>0.65</td>
<td>0.111</td>
<td>0.15</td>
</tr>
<tr>
<td>C) Zr d=4.2 g/cm³ Ø<75μm, prismatic, nearly colourless, transparent, l/w=3-4, abr. 2h</td>
<td>0.07</td>
<td>1588</td>
<td>518</td>
<td>966</td>
<td>0.11</td>
<td>0.293</td>
<td>0.65</td>
<td>4.518</td>
<td>0.65</td>
<td>0.112</td>
<td>0.15</td>
</tr>
<tr>
<td>D) Zr d=4.2 g/cm³ Ø=75-150 μm, stubby, plenty of crystal faces, light brown, translucent, l/w=1.5-3, abr. 21h</td>
<td>0.22</td>
<td>678</td>
<td>225</td>
<td>4249</td>
<td>0.11</td>
<td>0.311</td>
<td>0.65</td>
<td>4.797</td>
<td>0.65</td>
<td>0.112</td>
<td>0.15</td>
</tr>
<tr>
<td>MON d=4.3 g/cm³ Ø<75μm, equidimensional, yellow, translucent, minor inclusions, abr. 20 min</td>
<td>0.20</td>
<td>4435</td>
<td>5383</td>
<td>109160</td>
<td>3.16</td>
<td>0.328</td>
<td>0.65</td>
<td>5.071</td>
<td>0.65</td>
<td>0.112</td>
<td>0.15</td>
</tr>
<tr>
<td>EVITSKOG GRANITE</td>
<td>A1694 Eiviskog</td>
<td>A) Zr d=4.2 g/cm³ Ø<75μm, prismatic, brownish, nearly colourless, transparent, l/w=4-5, abr. 6h</td>
<td>0.25</td>
<td>889</td>
<td>308</td>
<td>707</td>
<td>0.13</td>
<td>0.301</td>
<td>0.65</td>
<td>4.596</td>
<td>0.65</td>
</tr>
<tr>
<td>B) Zr d=4.2 g/cm³ Ø=75-150 μm, prismatic, colourless, transparent, minor inclusions, l/w=4-5, abr. 12h</td>
<td>0.47</td>
<td>679</td>
<td>224</td>
<td>2605</td>
<td>0.12</td>
<td>0.306</td>
<td>0.65</td>
<td>4.678</td>
<td>0.65</td>
<td>0.111</td>
<td>0.15</td>
</tr>
<tr>
<td>C) Zr d=4.0-4.2 g/cm³ Ø<75μm, prismatic, brown, translucent-transparent, l/w=4-5, abr. 16h</td>
<td>0.56</td>
<td>1035</td>
<td>312</td>
<td>2409</td>
<td>0.07</td>
<td>0.289</td>
<td>0.65</td>
<td>4.410</td>
<td>0.65</td>
<td>0.111</td>
<td>0.15</td>
</tr>
<tr>
<td>D) Zr d=4.0-4.2 g/cm³ Ø<75μm, prismatic, brown, translucent-transparent, l/w=4-5, abr. 1.5h</td>
<td>0.34</td>
<td>1367</td>
<td>410</td>
<td>1082</td>
<td>0.08</td>
<td>0.278</td>
<td>0.65</td>
<td>4.225</td>
<td>0.65</td>
<td>0.110</td>
<td>0.15</td>
</tr>
<tr>
<td>E) Zr d=4.0-4.2 g/cm³ Ø<75μm, prismatic, brown, translucent-transparent, l/w=4-5, abr. 1.5h</td>
<td>0.18</td>
<td>4679</td>
<td>5549</td>
<td>79556</td>
<td>3.09</td>
<td>0.326</td>
<td>0.65</td>
<td>5.013</td>
<td>0.65</td>
<td>0.111</td>
<td>0.15</td>
</tr>
</tbody>
</table>
VEIKKOLA GRANITE

A1695 Hyppykallio

| Zr d>4.2 g/cm³ Ø<75μm, prismatic, reddish brown, pigmented, transparent, l/w=3-4, abr. 6h | 0.34 | 1341 | 380 | 779 | 0.05 0.265 0.65 | 4.036 0.65 | 0.111 0.15 0.97 1515 1642 1808±3
| B) Zr d>4.2 g/cm³ Ø<75μm, prismatic, thin, colourless, transparent, l/w=5, abr. 3h | 0.27 | 1706 | 528 | 796 | 0.05 0.289 0.65 | 4.446 0.65 | 0.111 0.15 0.97 1639 1721 1822±3
| C) Zr d>4.2 g/cm³ Ø>75μm, stubby, variable grain size, pigmented, translucent, l/w=2-4, abr. 4h | 0.36 | 1123 | 341 | 1022 | 0.04 0.290 0.65 | 4.841 0.65 | 0.112 0.15 0.97 1639 1728 1836±3
| D) Zr d=4.0-4.2 g/cm³ Ø<75μm, prismatic, elongate, light-coloured, some pigment, transparent, l/w=5, abr. 2h | 0.29 | 1687 | 528 | 773 | 0.05 0.291 0.65 | 4.468 0.65 | 0.111 0.15 0.97 1649 1725 1819±3
| E) Zr d=4.0-4.2 g/cm³ Ø<75μm, thin, prismatic, colourless, transparent, l/w=5 | 0.15 | 2131 | 601 | 627 | 0.04 0.260 0.65 | 3.936 0.65 | 0.110 0.15 0.97 1491 1621 1794±3
| F) Zr d=4.0-4.2 g/cm³ Ø<75μm, stubby, reddish brown, translucent, l/w=2-4, abr. 42h | 0.24 | 1719 | 539 | 1205 | 0.04 0.301 0.65 | 4.664 0.65 | 0.112 0.15 0.97 1698 1761 1836±3

A1718 Veikkola

| Zr d>4.2 g/cm³ Ø<75μm, stubby, brown, transparent, slightly pigmented, l/w=2, abr. 6h | 0.54 | 1785 | 529 | 1814 | 0.07 0.283 0.65 | 4.360 0.65 | 0.112 0.15 0.97 1609 1705 1825±3
| B) Zr d=4.0-4.2 g/cm³ Ø<75μm, prismatic, brownish, transparent, some inclusions, l/w=4, abr. 7h | 0.31 | 1842 | 566 | 2504 | 0.07 0.296 0.65 | 4.553 0.65 | 0.117 0.15 0.97 1669 1741 1828±3
| C) Zr d=4.0-4.2 g/cm³ Ø>75μm, stubby, light brown, some pigment, transparent, l/w=4, abr. 5h | 0.28 | 1655 | 493 | 1915 | 0.07 0.285 0.65 | 4.385 0.65 | 0.112 0.15 0.97 1611 1709 1830±3
| F) Zr d=3.8-4.0 g/cm³ Ø<75μm, prismatic, brownish, translucent, l/w=3-4, abr. 2h | 0.45 | 2428 | 678 | 4090 | 0.06 0.272 0.65 | 4.190 0.65 | 0.111 0.15 0.97 1558 1672 1819±3

A1733 Solvalla

| Zr d>4.2 g/cm³ Ø>75μm, prismatic, light brown, pigmented, translucent-transparent, l/w=4-5, abr. 22 h | 0.54 | 943 | 303 | 3105 | 0.05 0.316 2.05 | 4.926 2.05 | 0.113 0.15 0.99 1771 1807 1848±3
| B) Zr d=4.2 g/cm³ Ø<75μm, prismatic, colourless, transparent, l/w=3-5, abr. 20 h | 0.16 | 1270 | 409 | 3589 | 0.04 0.320 0.65 | 4.984 0.65 | 0.113 0.15 0.97 1790 1817 1847±3
| C) Zr d=4.2 g/cm³ Ø<75μm, prismatic, colourless, transparent, partly pigmented, l/w=3-5 | 0.57 | 936 | 295 | 1877 | 0.04 0.308 0.65 | 4.780 0.65 | 0.113 0.15 0.97 1729 1781 1843±3
| D) Zr d=4.0-4.2 g/cm³ Ø<75μm, prismatic, light brown, transparent, l/w=2-3, abr. 8 h | 0.24 | 1743 | 541 | 2519 | 0.05 0.305 0.65 | 4.728 0.65 | 0.113 0.16 0.97 1715 1772 1841±3

| MON d=4.3 g/cm³ Ø<75μm, flat, rounded, yellow, abr. 20 min. | 0.34 | 2714 | 5848 | 9133 | 6.30 0.335 0.65 | 5.229 0.65 | 0.113 0.15 0.97 1863 1857 1851±3

| A) Zr d>4.2 g/cm³ Ø>75μm, brown, partly pigmented, l/w=3-5, abr. 20 h | 0.54 | 943 | 303 | 3105 | 0.05 0.316 2.05 | 4.926 2.05 | 0.113 0.15 0.99 1771 1807 1848±3
| B) Zr d=4.2 g/cm³ Ø<75μm, prismatic, colourless, transparent, l/w=3-5, abr. 20 h | 0.16 | 1270 | 409 | 3589 | 0.04 0.320 0.65 | 4.984 0.65 | 0.113 0.15 0.97 1790 1817 1847±3
| C) Zr d=4.2 g/cm³ Ø<75μm, prismatic, colourless, transparent, partly pigmented, l/w=3-5 | 0.57 | 936 | 295 | 1877 | 0.04 0.308 0.65 | 4.780 0.65 | 0.113 0.15 0.97 1729 1781 1843±3
| D) Zr d=4.0-4.2 g/cm³ Ø<75μm, prismatic, light brown, transparent, l/w=2-3, abr. 8 h | 0.24 | 1743 | 541 | 2519 | 0.05 0.305 0.65 | 4.728 0.65 | 0.113 0.16 0.97 1715 1772 1841±3
| MON d=4.3 g/cm³ Ø<75μm, yellow, flat, rounded, transparent, abr. 25 min. | 0.50 | 2672 | 5899 | 14917 | 6.46 0.336 0.65 | 5.249 0.65 | 0.113 0.26 0.92 1869 1861 1851±5

*a) abr. refers to the duration of air-abrasion and l/w to the length-width ratio of the zircon crystals.
b) Isotopic ratios corrected for fractionation, blank (50 pg), and age related common lead (Stacey and Kramers, 1975; 206Pb/238U±0.2; 207Pb/238U±0.1; 208Pb/238U±0.2).
c) Error correlation of 207Pb/235U versus 206Pb/238U*
of the two colour types define a relatively good linear trend (MSWD=1.4) with an upper intercept age of 1824±5 Ma (Fig. 2c). Monazite is concordant at 1822±3 Ma.

The sample A1695 from the eastern part of the Veikkola granite area has monazite with a concordia age of 1852±3 Ma (Fig. 2d). Zircons are colorless to reddish brown, and many of the crystals have bright red iron oxide pigmentation. The six analyzed zircon fractions show considerable scatter on the concordia diagram, suggesting zircon heterogeneity (Fig. 2d). However, they indicate a coeval or slightly older crystallization age as the monazite result, yielding an upper intercept age of 1858±29 Ma (MSWD=18).

Because of the inferior precision of the dating of sample A1695, a second sample from the eastern part of the Veikkola granite was taken. This sample A1733, ~2 km northwest from the location of A1695, is in every way very similar to the sample A1695. Extreme care was taken in the selection of zircons and only transparent, homogeneous crystals with well developed prism and pyramid faces were used for analysis. U-Pb isotopic ratios from four zircon fractions of the sample A1733 define a discordia line with an upper intercept age of 1854±7 Ma (MSWD=1.9) (Fig. 2e). The nearly concordant monazite is consistent with this, having a $^{207}\text{Pb}/^{206}\text{Pb}$ age of 1851±5 Ma.

In the sample from the central part of the Veikkola granite area (A1718), ~10 km west of A1695, the magmatic zircons are light brown, pigmented and generally stubbier than those from the eastern part of the Veikkola granite. The discordant results of four zircon fractions define a discordia line, which intercepts the concordia curve at 1829±7 and 18±82 Ma (MSWD=1.3) (Fig. 2f). Monazite is concordant at 1825±3 Ma and thus consistent with the zircon result.

5.2. Ion microprobe U-Pb zircon chronology

Many of the earlier bulk analytical data on zircons from the migmatising microcline granites exhibit scatter considerably in excess of analytical uncertainty and thus suggest zircon heterogeneity (cf. Suominen, 1991). Therefore, ion microprobe studies on several samples were deemed necessary. Two samples from the Perniö granite (A1690 and A1691), one from the Hanko granite (A876) and one from the Oripää granite (A1357) were chosen for ion microprobe dating. The U-Pb analytical data are presented in Table 2. This set of samples was chosen because two of them (A876 and A1357) had been previously dated with ID-TIMS method and resulted in heterogeneous ages (Suominen, 1991 and Nironen, 1999, respectively). As for the Perniö granite, the sample A1691 had too few zircons to be dated with multigrain analysis and in the sample A1690 the zircons, although sufficient in number, were too altered and heterogeneous for a reliable selection of magmatic fractions to be recovered. Another reason for these particular samples to be chosen for ion microprobe study was that they traverse the lateorogenic granite belt from north to south and their whole-rock Nd isotope composition shifts from rather juvenile in the north to less radiogenic in the south (cf. chapter 5.3). The inferred differences in crustal residence ages were expected to manifest themselves in the zircon inheritance patterns of these granites.

5.2.1. Perniö granite

The magmatic zircons from the sample A1690 are generally stubby, reddish due to a pigment overlay and almost invariably zonally altered (Fig. 3). The BSE images show that many of the crystals have a distinct core that has lost its original internal structure. Of the 18 dated spots, 9 hit an altered part and are extremely discordant. In addition, one analysis of a rounded core domain gave a strongly reversely discordant result. The remaining 8 spots, representing the healthy parts of the grains, cluster close to the concordia curve. They define an upper intercept age of 1844±8 Ma (MSWD=1.0). When also the slightly reversely discordant data points 01b and 02a are excluded, a concordia age of 1835±12 Ma from the remaining six analyses can be calculated (Fig. 3). Monazites from this sample (Fig. 2a and Table 1) as well as from the nearby sample A399 Kisto-
Fig. 2. Concordia diagrams of the TIMS U-Pb data. Fraction notation refers to the first column of Table 1. a) Mona-zites from the Perniö granite. b) Zircon and monazite results from the Tenhola granite. c) Zircon and monazite results from the Evitskog granite. d) Heterogeneous zircon and concordant monazite results from the eastern part of the Veikkola granite area. e) Another sample of the eastern Veikkola granite. The zircon and monazite results confirm the concordant monazite age of the nearby sample A1695 Hyppykallio. f) Zircon and monazite results from the central part of the Veikkola granite area.
<p>	Sample/spot #	206(^{\text{Pb}})/204 (\pm 1) (Meio)	207(^{\text{Pb}})/204 (\pm 1) (Meio)	208(^{\text{Pb}})/204 (\pm 1) (Meio)	206(^{\text{Pb}})/204 (\pm 1) (Geol)	207(^{\text{Pb}})/204 (\pm 1) (Geol)	208(^{\text{Pb}})/204 (\pm 1) (Geol)	(\Delta^{206}{\text{Pb}})	U (%)	Pb/(\text{U})	(\Delta^{207}{\text{Pb}})	U (%)	Pb/(\text{U})	(\Delta^{208}_{\text{Pb}})	U (%)	Pb/(\text{U})	(\text{Pu}^{\text{207}})	(\text{Pu}^{\text{208}})	(\text{Pu}^{\text{209}})	(\text{Pu}^{\text{210}})
PERSIO GRANITE																				
Al691 Pungolle	1.75 ± 0.03	1.72 ± 0.02	1.70 ± 0.02	1.75 ± 0.03	1.72 ± 0.02	1.70 ± 0.02														
A1690-90	1142-01	1142-02	1142-03	1142-04	1142-05	1142-06														
A1690-90	1142-07	1142-08	1142-09	1142-10	1142-11	1142-12														
A1690-90	1142-13	1142-14	1142-15	1142-16	1142-17	1142-18													</p>	
<table>
<thead>
<tr>
<th>Sample/spot #</th>
<th>Derived ages (Ma)</th>
<th>Corrected ratios</th>
<th>Elemental data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>206Pb/238U ±1σ</td>
<td>207Pb/235U ±1σ</td>
<td>207Pb/206Pb ±1σ</td>
<td>206Pb/238U ±1σ</td>
</tr>
<tr>
<td>HANKO GRANITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A876 Tulludden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n1232-01a</td>
<td>1743 42 1787 23 1839 5</td>
<td>0.310 273</td>
<td>4.812 274</td>
<td>0.112 263</td>
</tr>
<tr>
<td>n1232-02a</td>
<td>802 21 1051 20 1611 15</td>
<td>0.132 2.84</td>
<td>1.814 2.94</td>
<td>0.09 0.78</td>
</tr>
<tr>
<td>n1232-03a</td>
<td>747 48 985 46 1563 44</td>
<td>0.123 6.77</td>
<td>1.639 7.18</td>
<td>0.097 2.37</td>
</tr>
<tr>
<td>n1232-04a</td>
<td>1552 38 1713 24 1915 10</td>
<td>0.272 2.75</td>
<td>4.402 2.80</td>
<td>0.11 0.55</td>
</tr>
<tr>
<td>n1232-04b</td>
<td>418 17 597 19 1063 36</td>
<td>0.077 3.64</td>
<td>0.801 4.05</td>
<td>0.075 1.79</td>
</tr>
<tr>
<td>n1232-05a</td>
<td>1544 56 1568 53 1599 90</td>
<td>0.271 4.07</td>
<td>3.682 6.41</td>
<td>0.099 4.96</td>
</tr>
<tr>
<td>n1232-06a</td>
<td>469 12 570 13 999 27</td>
<td>0.075 2.74</td>
<td>0.753 3.06</td>
<td>0.072 1.36</td>
</tr>
<tr>
<td>n1232-07a</td>
<td>1684 41 1759 24 1850 7</td>
<td>0.299 2.79</td>
<td>4.656 2.81</td>
<td>0.113 0.37</td>
</tr>
<tr>
<td>n1232-08a</td>
<td>907 28 1074 26 1431 41</td>
<td>0.151 3.28</td>
<td>1.881 3.93</td>
<td>0.090 2.17</td>
</tr>
<tr>
<td>n1232-09a</td>
<td>1550 37 1516 26 1756 24</td>
<td>0.233 3.04</td>
<td>3.450 3.25</td>
<td>0.107 1.15</td>
</tr>
<tr>
<td>n1232-09b</td>
<td>593 16 749 16 1248 19</td>
<td>0.096 2.84</td>
<td>1.090 3.00</td>
<td>0.082 0.78</td>
</tr>
<tr>
<td>n1232-10a</td>
<td>1350 37 1516 26 1756 24</td>
<td>0.233 3.04</td>
<td>3.450 3.25</td>
<td>0.107 1.15</td>
</tr>
<tr>
<td>n1232-11a</td>
<td>1226 31 1452 22 1800 6</td>
<td>0.209 2.73</td>
<td>2.502 2.76</td>
<td>0.102 0.38</td>
</tr>
<tr>
<td>n1232-12a</td>
<td>1714 41 1779 24 1856 8</td>
<td>0.305 2.73</td>
<td>4.769 2.77</td>
<td>0.114 0.44</td>
</tr>
<tr>
<td>n1232-13a</td>
<td>1597 39 1719 19 1870 9</td>
<td>0.281 2.73</td>
<td>4.435 2.77</td>
<td>0.114 0.49</td>
</tr>
<tr>
<td>n1232-14a</td>
<td>1824 44 1837 24 1851 6</td>
<td>0.327 2.78</td>
<td>5.104 2.79</td>
<td>0.113 0.31</td>
</tr>
<tr>
<td>n1232-15a</td>
<td>1905 45 1890 24 1875 4</td>
<td>0.344 2.73</td>
<td>5.435 2.77</td>
<td>0.115 0.20</td>
</tr>
</tbody>
</table>

a Rho, error correlation for 207Pb/235U versus 206Pb/238U ratios.
b Degree of discordance is calculated at the closest 2σ limit. Empty cells mark concordant data.

Only data in bold are included in age calculations. Other data are rejected due to high common Pb and/or discordance.
la (Suominen, 1991) (1829±3 Ma and 1831±6 Ma, respectively) are coeval with the zircon concordia age (Fig. 3).

Fig. 3. Perniö granite (samples A1690 and A1691). Upper part: Back-scattered electron (BSE) images of some of the zircon crystals studied with ion microprobe. Analysis numbers and $^{207}\text{Pb}/^{206}\text{Pb}$ ages of the analysis spots are indicated (cf. Table 2). Bright white areas are remnants of gold coating. Zircon crystal 01 (A1690) is relatively healthy, with slightly older center. Crystals 09 from the same sample and 07 from A1691 are more typical for the Perniö granite, prismatic and zonally altered. Lower part: Concordant U-Pb data yields an age of 1835±12 Ma for the sample A1690 and 1842±7 Ma for the sample A1691. The white circles are monazites from the same samples (Table 1 and Fig. 2a) and the white squares are monazites from the same sites reported by Suominen (1991) (samples A399 and A389).

Most zircons from the sample A1691 are prismatic and generally longer than those of A1690, but the inner structure is very similar with cracking and alteration rims (Fig. 3). The U-Pb ion microprobe analysis of this sample comprises 17 spots, of which 9 hit an altered zone and were discarded. When the results from the remaining 8 healthy spots are considered, it is evident that one of them (near the edge of a homogeneous crystal 01a), though discordant, represents an inherited zircon with a $^{207}\text{Pb}/^{206}\text{Pb}$ age of 1936 Ma. If the slightly discordant analysis spots 03a and 10b are omitted, a concordia age of 1842±7 Ma ($n=5/17$) can be calculated (Fig. 3). The monazite from this sample (Fig. 2a and Table 1) is slightly younger (1831±3 Ma) than the zircon age. From the same outcrop, Suominen (1991) reported a monazite concordia age of 1836±3 Ma (Fig. 3), which overlaps with our new zircon result.

5.2.2. Hanko granite

Sample A876 from the Hanko granite has mostly prismatic, stubby and brown zircon. In the Hanko granite, most of the zircon is heavily altered and therefore only three out of 14 obtained ages are concordant or
nearly concordant (Fig. 4). The near-concordant spots of the magmatic zircons have a mean $^{207}\text{Pb}/^{206}\text{Pb}$ age of 1852 ± 18 Ma ($n=3/14$). This age result should be treated with caution because of insufficient statistics. Evidence of inheritance is given by spot 04a (Fig. 4) that hit the core of an altered zircon crystal (a discordant result with a $^{207}\text{Pb}/^{206}\text{Pb}$ age of 1915 ± 10 Ma). Previous ID-TIMS monazite analyses (Suominen, 1991; Huhma, 1986) from two samples representing the Hanko granite (1829 ± 9 Ma and 1822 ± 6 Ma) point to a slightly younger age than the nearly concordant zircons.

5.2.3. Oripää granite

Sample A1357 from the Oripää granite contains only a small amount of zircon and it can be divided into two morphological types: (1) prismatic, stubby and light brown and (2) more rotund, anhedral and colorless (Fig. 5). The BSE study shows that zircons of this sample are less altered than those of the other samples. Hence, only five of 18 analysis spots had to be discarded. The prismatic zircons display a weak magmatic zoning. An upper intercept age of 1872 ± 10 Ma (MSWD=0.96) for the prismatic zircons ($n=9/18$) can be calculated. The small, more anhedral zircons have a metamorphic appearance, no zoning and also lower U contents than the prismatic ones. These apparently metamorphic crystals yield a result of 1850 ± 16 Ma (MSWD=1.00; $n=4$) (Fig. 5). Thus, the two types are coeval within analytical error limits.
5.2.4. Rejected data — a note on discordance

A total of 67 spots of the zircons were analyzed, but only 29 of them yielded concordant or nearly concordant age data with low concentration of common lead. The reason for the low profitability was that the choice of zircon spots to be dated was based solely on cathodoluminescence (CL) images. In later back-scattered electron (BSE) observations it turned out that the CL images do not show well the abundant cracks and the often pervasive alteration of zircons from the lateorogenic microcline granites. EDS analyses of these metamict parts reveal increased H$_2$O, Ca, Al, U and common Pb concentrations, and the U-Pb analyses are extremely discordant. An example of a typical metamict zircon is shown in the BSE image of zircon 04 from the Hanko granite (sample A876) in Fig. 4. The alteration of the zircon domains offers an explanation to the strong discordance of the ID-TIMS U-Pb results reported for the Perniö and Hanko granites by Suominen (1991) and for the Oripää granite by Nironen (1999). Plotted together (Fig. 6), all of the ion microprobe data for the Perniö granite (sample A1690) and the previous multigrain analysis results of the nearby samples A55 and A399 (Suominen, 1991) form identical discordance patterns. The situation is similar with the sample A1691 and samples from the Hanko (A876) and Oripää (A1357) granites.

5.3. Whole-rock Nd isotopes

Neodymium isotope compositions of the eight dated lateorogenic microcline granites and the synorogenic Pöytyä granodiorite are shown in Table 3 and Figs.
7 and 8. The lateorogenic samples show considerable variation in the elemental concentrations of Sm and Nd (1.4 to 15.7 ppm and 8.9 to 83.5 ppm, respectively) but a relatively small range in Sm/Nd ($^{153}\text{Sm}/^{144}\text{Nd}=0.093$ to 0.119). In a Sm-Nd isochron diagram (not shown), the samples show rather substantial scatter and, combined with the small range in Sm/Nd, do not yield meaningful age information. This is reflected also in the initial composition of the samples: the ε_{Nd} values range from -1.1 to +2.5, which is about five times the maximum experimental error (±0.35 units) on ε_{Nd}. The depleted mantle model ages (DePaolo, 1981) similarly show a rather large range, from 1940 to 2232 Ma.

The initial ε_{Nd} values of the dated samples fall into three groups (Fig. 7; Table 3). The sample A876 representing the Hanko granite is the most unradiogenic (ε_{Nd} at 1852 Ma=-1.1, T_{DM} model age 2232 Ma) and the Perniö, Tenhola, Evitskog and Veikkola granites with ages of the order of 1850–1820 Ma form a tight group with initial ε_{Nd} of -0.6 to -0.3 and T_{DM} model ages between 2133 and 2193 Ma. The Oripää granite (A1357) has the most juvenile Nd (ε_{Nd} +2.5 at 1.85 Ga; T_{DM} model age 1940 Ma). The adjacent synorogenic Pöytä granodiorite is rather juvenile with ε_{Nd} (at 1870 Ma) of +1.8 and a model age of 2028 Ma. Fig. 8 shows that the ε_{Nd} values shift from positive in the north to increasingly negative towards the south, whereas in E-W direction, the values remain constant.

6. Discussion
6.1. General implications
A general feature of the U-Pb age determinations of the lateorogenic granites of southwestern Finland is that in most cases the zircons and monazites record similar ages. Some zircon U-Pb results also point to heterogeneous zircon populations. Because of this, combined with the relatively high average uranium content of the zircons (cf. Tables 1, 2) and their consecutive metamictization, the monazites often provide more meaningful age data than the zircons.

Age results from this study as well as data from earlier publications are summarized in Table 4 and shown graphically in Fig. 9. With the exception of the ion microprobe results, only high precision data, i.e., with age errors less than ±10 Ma have been considered. Where ID-TIMS zircon and monazite ages are identical (within experimental error), the more precise of the two, usually the monazite age, has been used. As shown in Fig. 9, the majority of the ages fall in the
Table 3. Nd isotope data for the migmatizing microcline granites and the Pöytyä granodiorite in southern Finland

<table>
<thead>
<tr>
<th>Sample</th>
<th>Granite</th>
<th>Age (Ma) ± Error</th>
<th>Sm (ppm)</th>
<th>Nd (ppm)</th>
<th>147Sm/144Nd</th>
<th>143Nd/144Nd</th>
<th>$\varepsilon_{Nd} (t)$</th>
<th>T_{DM} (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1690</td>
<td>Perniö granite, Kistolanperä</td>
<td>1835 ± 12</td>
<td>9.76</td>
<td>58.25</td>
<td>0.1013</td>
<td>0.511465 ± 11</td>
<td>-0.4</td>
<td>2133</td>
</tr>
<tr>
<td>A1691</td>
<td>Perniö granite, Pungböle</td>
<td>1842 ± 7</td>
<td>8.59</td>
<td>45.92</td>
<td>0.1131</td>
<td>0.511597 ± 8</td>
<td>-0.6</td>
<td>2184</td>
</tr>
<tr>
<td>A1692</td>
<td>Tenhola granite</td>
<td>1833 ± 6</td>
<td>15.67</td>
<td>83.53</td>
<td>0.1134</td>
<td>0.511603 ± 15</td>
<td>-0.6</td>
<td>2183</td>
</tr>
<tr>
<td>A1694</td>
<td>Evitskog granite</td>
<td>1823 ± 3</td>
<td>11.22</td>
<td>57.21</td>
<td>0.1185</td>
<td>0.511670 ± 9</td>
<td>-0.4</td>
<td>2193</td>
</tr>
<tr>
<td>A1695</td>
<td>Veikkola granite, Hpykykallio</td>
<td>1852 ± 3</td>
<td>7.08</td>
<td>36.07</td>
<td>0.1186</td>
<td>0.511672 ± 10</td>
<td>-0.3</td>
<td>2191</td>
</tr>
<tr>
<td>A1718</td>
<td>Veikkola granite, Veikkola</td>
<td>1825 ± 3</td>
<td>9.27</td>
<td>51.56</td>
<td>0.1086</td>
<td>0.511559 ± 7</td>
<td>-0.4</td>
<td>2146</td>
</tr>
<tr>
<td>27-MAN-02</td>
<td>Hanko granite, Tulludden</td>
<td>1852 ± 18</td>
<td>6.87</td>
<td>36.89</td>
<td>0.1126</td>
<td>0.511559 ± 10</td>
<td>-1.1</td>
<td>2232</td>
</tr>
<tr>
<td>A1357e</td>
<td>Oripää granite</td>
<td>1850 ± 16</td>
<td>1.36</td>
<td>8.85</td>
<td>0.09263</td>
<td>0.511500 ± 16</td>
<td>+2.5</td>
<td>1940</td>
</tr>
<tr>
<td>136-MN-90</td>
<td>Pöytyä granodiorite</td>
<td>1870 ± 5f</td>
<td>3.43</td>
<td>17.87</td>
<td>0.1159</td>
<td>0.511737 ± 9</td>
<td>+1.8</td>
<td>2028</td>
</tr>
</tbody>
</table>

- Estimated error is better than 0.5%.
- Normalized to 146Nd/144Nd = 0.7219, within-run precision expressed as $2\sigma_m$ in the last significant digits.
- Initial ε_{Nd} values calculated using chondritic ratios of 143Nd/144Nd = 0.512638 and 147Sm/144Nd = 0.1966, maximum error is ± 0.35 ε-units.
- Depleted mantle model age, calculated according to the model of DePaolo (1981).
- Age from Nironen (1999).

Fig. 7. Nd versus age diagram showing the initial Nd isotope composition of the eight lateorogenic microcline granites dated by the U-Pb method in this study. Also shown is the composition of the Pöytyä granodiorite and that of six previously analyzed synorogenic granitoids from the surrounding crust (arc complex of southern Finland; cf. Korsman et al., 1999) according to Huhma (1986) and Patchett & Kouvo (1986). Solid and dashed lines denote the evolution of the individual samples. DM is the depleted mantle of DePaolo (1981), CHUR is bulk earth evolution (DePaolo & Wasserburg, 1976).
range of ~1840–1820 Ma, a result already anticipated on the basis of earlier studies. Fig. 9 also shows that the ages of granulite facies metamorphism in southern Finland record roughly the same time span.

Among the lateorogenic granites, the most notable deviations from the general age distribution are the Veikkola and Oripää areas, and their U-Pb age results are discussed in more detail below.

6.2. The Veikkola area

Earlier studies of the lateorogenic, migmatizing microcline granites of southern Finland have indicated that their emplacement took place in a series of magmatic pulses during the time interval of 1.84–1.82 Ga (e.g. Hopgood et al., 1983; Huhma, 1986; Suominen, 1991). However, our new results on the Veikkola granite area (Fig. 2) show an age difference of 20–30 Ma between the eastern and the central parts of the granite. The scattered zircon age data of the sample A1695 from the eastern part implies zircon heterogeneity, but concordant monazite age of 1852±3 Ma from the same sample indicates older emplacement age compared to the previous studies and also compared to the central part of the same granite area. On careful selection of zircon crystals to be dated, we succeeded to get a meaningful age result for the sample A1733 from the eastern margin of the Veikkola granite that verifies the ≥1.85 Ga age for that part of the area. The central part (sample A1718) in turn displays a fairly good zircon upper intercept age of 1829±7 Ma (MSWD=1.3), and the result is backed up by the concordant monazite age of 1825±3 Ma. The selected zircons of the samples, especially in A1733, but also in A1718, are small, clear, homogeneous, prismatic and clearly of magmatic origin, and show no traces of later reworking (e.g. etched surfaces, growth nuclei or turbidity). Therefore, the ages are obviously real emplacement ages, as inheritance, metamorphism or hydrothermal activity in only one
of the two localities less than 10 km apart is not likely to occur. Also, inherited monazite would hardly preserve in a thermal event such as a granite emplacement. The Veikkola granite thus most likely consists of two different intrusions that so far have been recognized by isotopic dating alone.

6.3. The Oripää granite

The Oripää granite was included in this study mainly because previous conventional work indicates a zircon population that is heterogeneous in terms of age (Nironen, 1999). In that study, however, the ages of the red and pale brown zircon varieties overlap within analytical error limits. Parallel results are obtained with ion microprobe in this study as the older, prismatic Oripää zircons \((n=9/18)\) define an age of 1872±10 Ma, indicating crystallization close to the culmination of the Svecofennian orogeny. This is roughly the same as the emplacement age of the nearby Pöytyä granodiorite (1870±5 Ma; Nironen, 1999). The younger, anhedral and colorless zircons \((n=4/18)\) from Oripää have an age of 1850±16 Ma. All the zircon data deviates clearly from the considerably younger monazite age of 1794±10 Ma (op. cit.).

Considering the very low REE concentration of the rock, combined with the low Zr content (Rämö & Nironen, 2001), it is evident that the rock represents a low-temperature (minimum) melt. In such conditions, zircon crystals remain solid in the anatectic magma (Chappell, 2005), and are likely to keep their original U-Pb isotopic ratios. Moreover, on the basis of careful examination of the BSE images, there is a possibility that some of the prismatic zircons bear a growth rim that escaped the ion microprobe dating. Thus, the obtained zircon ages may not represent the emplacement age of the batholith.

The Oripää granite is undeformed and entrains blocks of the surrounding ~1.87 Ga gneisses, implying later emplacement. The granite stock even seems to post-date the surrounding EW-trending \(D_3\) structures, dated at 1824±5 Ma near Turku, more than 50 km southwest of Oripää (Väisänen et al., 2002). However, Nironen (1999) considers the \(D_3\) in Oripää area as a separate event, tied with the emplacement of the Pöytyä granodiorite, i.e., 1.87 Ga. Therefore, we conclude that the 1872±10 Ma zircon population is inherited. As no older inherited zircon ages typical of Svecofennian detrital material (cf. Claesson et al., 1993; Lahtinen et al., 2002) were encountered, and yet the composition of the granite is characteristic of a low-temperature melt, indicating that no significant new zircon crystallization took place, it is possible that the adjacent synorogenic granitoid rocks constitute the principal source for the Oripää granite, instead of
sedimentary source rocks suggested earlier (Rämö & Nironen, 2001).

The origin of the minor 1850±16 Ma zircon population is somewhat ambiguous. Nironen (1999) obtained a comparable ID-TIMS age (1850±27 Ma) and Rämö & Nironen (2001) suggest that it marks the thrust-induced melting after the accretion of the arc complex of southern Finland. Then, the monazite age of 1794±10 Ma (Nironen, 1999) could be the emplacement age of the granite. Alternatively, the younger zircon age might represent the original emplacement age of the granite pluton. In that case, the monazite age could be related to a wider regional metamorphic event, as similar indications are given by several granitoid rocks throughout southern Finland with titanites or monazites in the 1780–1790 Ma bracket (Hopgood et al., 1983; Vaasjoki, 1995; Nironen, 1999; Ehlers et al., 2004). However, on the basis of the current data set, unequivocal age determination of the Oripää granite is not possible.

6.4. Regional implications

The concordant 1852±3 Ma monazite age obtained from the eastern part of the Veikkola area necessitates an adjustment of the upper limit of the traditional 1.84–1.82 Ga time span for the emplacement of the lateorogenic migmatizing microcline granites in southwestern Finland. The eastern Veikkola granite is the only lateorogenic granite dated so far with age over 1850 Ma. Thus, while the migmatizing microcline granite activity in southwestern Finland apparently lasted from ~1.85 to ~1.82 Ga, it most likely occurred in several distinct pulses, and future models dealing with the tectonic evolution of the arc complex of southern Finland after its accretion should account for this quite large age distribution. It seems that the rocks associated with high-grade metamorphism in southerwestern Finland also record about the same time span as the lateorogenic granites (Table 4 and Fig. 9). The data suggest that metamorphic peak was attained in the eastern half of the present study area (1837±3 Ma monazite age from a charnockite in Lohja; K. Korsman, pers. comm.) earlier than in the Turku area to the west (metamorphic zircon growth age 1824±5 Ma; Väisänen et al., 2002) (Table 4). Similar metamorphic ages (~1.83 Ga) are also reported from monazites farther west from the present study area (e.g. Ehlers et al., 2004).

The Nd isotope composition of the lateorogenic microcline granites in southwesternmost Finland reveals a homogeneous zone in an east-west direction across the main lateorogenic belt (Fig. 8). However, the source of the lateorogenic magmatism appears to have been slightly more juvenile in the north than in the south (Figs. 7, 8). Although the Nd isotope data are relatively few, the pattern of the initial ε_{Nd} values of the lateorogenic granites is not in favor of a simple depleted mantle–Paleoproterozoic crust mixing model. Rather, the range in the initial Nd isotope composition of the lateorogenic granites complies with the variation shown by the synorogenic granitoids of the surrounding orogenic crust (the arc complex of southern Finland; cf. Korsman et al., 1999). The available data on the synorogenic granitoids show a bimodal distribution with the southwesternmost part of the terrane having the least radiogenic ε_{Nd} values (Fig. 7; cf. Lahtinen & Huhma, 1997; Rämö et al., 2001). Of the lateorogenic granites in this study, sample A876 from the Hanko granite is the least radiogenic (initial ε_{Nd} value of -1.1). The Perniö, Evitskog, and Veikkola granites (initial ε_{Nd} values between -0.6 and -0.3) are similar to the analyses of the Hanko granite and also similar to the southernmost synorogenic granitoid samples. The Oripää granite, the northernmost of the eight dated samples, is much more radiogenic (highest ε_{Nd}) than the other granites and is, in this regard, similar to the synorogenic granitoids in the northern part of the arc complex of southern Finland (Fig. 7).

The southward shift to less radiogenic initial ε_{Nd} values in both the late- and synorogenic granitoid rocks may reflect the presence of terrane boundaries within the arc complex of southern Finland. Regarding the notable differences in their initial ε_{Nd} values, it is surprising that the four samples from the Hanko, Perniö and Oripää granites studied by ion microprobe do not reveal any substantial variation in zircon inheritance
Table 4. U-Pb ages in ascending order from migmatizing granites and rocks associated with granulite facies metamorphism (in italics), southwestern Finland.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Basic-X</th>
<th>Basic-Y</th>
<th>Locality</th>
<th>Min Rock type</th>
<th>Age (Ma) ±2σ (Ma)</th>
<th>N</th>
<th>R</th>
<th>Reference</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1694</td>
<td>6676850</td>
<td>2520540</td>
<td>Evitskog</td>
<td>Microcline granite</td>
<td>1822 3</td>
<td>1</td>
<td>C</td>
<td>this study</td>
<td>C Mz coeval</td>
</tr>
<tr>
<td>A1718</td>
<td>6684370</td>
<td>2524900</td>
<td>Veikko</td>
<td>Microcline granite</td>
<td>1825 3</td>
<td>1</td>
<td>C</td>
<td>this study</td>
<td>Zr U1 at 1829 ± 7</td>
</tr>
<tr>
<td>A0389</td>
<td>6677400</td>
<td>2540960</td>
<td>Haarla Pemiö</td>
<td>Microcline granite</td>
<td>1826 5</td>
<td>1</td>
<td>C</td>
<td>Suominen, 1991</td>
<td>Zr discordant</td>
</tr>
<tr>
<td>A0875</td>
<td>6634330</td>
<td>2442550</td>
<td>Määrskär</td>
<td>Microcline granite</td>
<td>1829 6</td>
<td>1</td>
<td>NC</td>
<td>Huhma, 1986</td>
<td>Zr heterogeneous</td>
</tr>
<tr>
<td>A0997</td>
<td>6669200</td>
<td>1573680</td>
<td>Tamno Parainen</td>
<td>Microcline granite</td>
<td>1830 5</td>
<td>1</td>
<td>C</td>
<td>Suominen, 1991</td>
<td>Zr U1 at 1829 ± 31 Ma</td>
</tr>
<tr>
<td>A0399</td>
<td>6693300</td>
<td>2458550</td>
<td>Kistola Muurila</td>
<td>Microcline granite</td>
<td>1831 6</td>
<td>1</td>
<td>NC</td>
<td>Suominen, 1991</td>
<td>Zr reference line 1830 & 190 Ma</td>
</tr>
<tr>
<td>A1692</td>
<td>6662850</td>
<td>2459200</td>
<td>Olsbøle Tenhola</td>
<td>Microcline granite</td>
<td>1831 3</td>
<td>1</td>
<td>C</td>
<td>this study</td>
<td>C Mz coeval</td>
</tr>
<tr>
<td>A0876</td>
<td>6633450</td>
<td>2439080</td>
<td>Tulludden Hanko</td>
<td>Microcline granite</td>
<td>1832 6</td>
<td>1</td>
<td>C</td>
<td>Suominen, 1991</td>
<td>Zr heterogeneous</td>
</tr>
<tr>
<td>A1690</td>
<td>6693160</td>
<td>2459590</td>
<td>Kistolanperä Muurila</td>
<td>Microcline granite</td>
<td>1835 12</td>
<td>6</td>
<td>C</td>
<td>this study</td>
<td>NORDSIM data</td>
</tr>
<tr>
<td>A0390</td>
<td>6679740</td>
<td>2423430</td>
<td>Pungbøle Kemiö</td>
<td>Microcline granite</td>
<td>1836 3</td>
<td>1</td>
<td>C</td>
<td>Suominen, 1991</td>
<td>Zr reference line 1835 & 230 Ma</td>
</tr>
<tr>
<td>A1691</td>
<td>6679750</td>
<td>2424360</td>
<td>Pungbøle Kemiö</td>
<td>Microcline granite</td>
<td>1842 7</td>
<td>5</td>
<td>NC</td>
<td>this study</td>
<td>NORDSIM data</td>
</tr>
<tr>
<td>A1695</td>
<td>6685000</td>
<td>2533960</td>
<td>Hyyrykallio Espoo</td>
<td>Microcline granite</td>
<td>1852 3</td>
<td>1</td>
<td>C</td>
<td>this study</td>
<td>Zr U1 at 1858±19 Ma</td>
</tr>
<tr>
<td>A1733</td>
<td>6687248</td>
<td>2531035</td>
<td>Solvalla Espoo</td>
<td>Microcline granite</td>
<td>1854 7</td>
<td>4</td>
<td>UI</td>
<td>this study</td>
<td>NC Mz 1851 ± 5 Ma</td>
</tr>
<tr>
<td>PSH16</td>
<td>6716100</td>
<td>1552700</td>
<td>Lemu</td>
<td>Garn-cord. gneis, leucosome</td>
<td>1824 5</td>
<td>6</td>
<td>C</td>
<td>Väisänen et al., 2002</td>
<td>NORDSIM data</td>
</tr>
<tr>
<td>A0064</td>
<td>6704280</td>
<td>1568740</td>
<td>Kukola Turku</td>
<td>Garn-cord. granite</td>
<td>1826 9</td>
<td>1</td>
<td>NC</td>
<td>Suominen, 1991</td>
<td>Zr reference line 1840 ± 320 Ma</td>
</tr>
<tr>
<td>A1335</td>
<td>6696060</td>
<td>2500950</td>
<td>Makkala Lahja</td>
<td>Charnockite</td>
<td>1837 3</td>
<td>1</td>
<td>C</td>
<td>K. Kortman, pers. comm.</td>
<td>Zr U1 at 1860 ± 5 Ma</td>
</tr>
<tr>
<td>A0948</td>
<td>6633700</td>
<td>2467250</td>
<td>Inverskär Tammisäari</td>
<td>Aplite</td>
<td>1843 6</td>
<td>3</td>
<td>UI</td>
<td>Haggard et al., 1983</td>
<td>C Mz 1807 ± 12 Ma</td>
</tr>
<tr>
<td>DU91</td>
<td>6705900</td>
<td>1566100</td>
<td>Naantali</td>
<td>Hypersthene tonalite</td>
<td>1849 4</td>
<td>5</td>
<td>UI</td>
<td>van Duin, 1992</td>
<td>recalculated by M. Vaasjoki</td>
</tr>
</tbody>
</table>

N = number of the mineral fractions.
R = type of the age data, UI = Upper intercept, C = concordant, NC = nearly concordant.
pattern. Provided that the less radiogenic granites are, at least partly, derived from material that was separated from the mantle considerably longer ago, it would seem likely that the zircons exhibited traces of earlier crystallization ages. Even more so, as the BSE images of the zircon crystals from the Perniö and Hanko granites show some distinct cores. However, the cores are generally thoroughly homogenized and only occasionally there are vestiges of magmatic zoning left. As a result, only few spots of the entire data set stand out as notably older than the bulk of the analysis spots. This indicates that the U-Pb systematics of the inherited zircon populations were at least partially reset in the course of the granite emplacement.

Our data extend the length of the period for the emplacement of the lateorogenic granites in southwestern Finland. Previously, ages of about 1.80 Ga for late-orogenic granites farther east have been reported (e.g. Nykänen, 1983; Korsman et al., 1984), while parts of the Veikkola granite here yield an emplacement age of about 1.85 Ga. Considering that some synorogenic Svecofennian granitoids exhibit ages from 1.88 to 1.85 Ga (e.g. Vaasjoki & Kontoniemi, 1991; Väisänen et al., 2002) and that postorogenic intrusions in southern Finland record ages between ~1.815 and 1.77 Ga (Vaasjoki, 1995; Väisänen et al., 2000; Suominen, 1991), there seem to be no temporal limits for the classically defined stages of syn-, late- and postorogenic igneous activities. The overlapping age intervals of these types of granite magmatism indicate that the nature of igneous activity is tied with processes rather than time. Combined isotopic and structural evidence (Nironen, 1997; Korsman et al., 1999) show that the various Svecofennian terranes had been assembled by 1.87 Ga ago. This also marks the end of the culmination of the Svecofennian orogeny. However, in contrast to some earlier opinions (e.g. Vaasjoki, 1996), orogenic movements did not cease simultaneously everywhere in southern Finland.

7. Conclusions

The results from the multi-grain ID-TIMS and SIMS U-Pb studies as well as whole-rock Nd isotope analyses of the lateorogenic granites of southwestern Finland suggest the following:

1. The age spectrum of the migmatizing microcline granites in southwestern Finland seems to be wider than thought before, ranging from ~1.85 Ga determined from the eastern part of the Veikkola granite area to ~1.82 Ga obtained from the Evitskog granite. Rocks associated with granulite facies metamorphism record a roughly similar time span within the same area.

2. In most cases, zircons and monazites of individual samples record similar ages. The most notable exception to this is the Oripää granite that has seemingly only inherited zircon. The monazite age is 1794±10 Ma, which either represents the age of the granite, or a wider regional thermal event that post-dates the emplacement of the Oripää granite stock.

3. The diminishing proportion of radiogenic Nd in the lateorogenic granites towards the south of the study area reflects an increase in crustal residence ages. The initial ε_{Nd} values range from +2.5 of the Oripää granite to -1.1 of the Hanko granite, and the corresponding depleted mantle model ages range from 1940 Ma to 2232 Ma, respectively. Geographically, the variation pattern is very similar to that shown by the synorogenic Svecofennian granitoid rocks.

4. The U-Pb ages obtained with the ion microprobe cluster close to the granite emplacement in all cases except for the Oripää granite, i.e., the U-Pb system of inherited zircon cores is predominantly reset during the granite emplacement. Thus the concept of potential terrane boundaries derived from the Nd isotope results cannot be verified on the basis of single zircon age data.

Acknowledgements

The authors wish to thank Lasse Heikkinen, Tuula Hokkanen, Matti Karhunen, Marita Niemelä and Arto Pulkkinen for their invaluable help in the mineralogical and isotope laboratory of the Geological Survey of Finland. Dr. Martin Whitehouse, Dr. Lev Ilyinsky and Ms Kerstin Lindén at the Nordsim laboratory are deeply thanked for the help and guidance with the
References

Nykkänen, O., 1983. Punkaharju and Parikkala. Explanation...
to the Geological map of Finland 1:100 000, pre-Quaternary rocks, sheets 4124+4142, 4123+4114, 81 p (in Finnish with English summary).

